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Abstract: Given a descriptor (singular) system whose transfer function matrix W (λ) is
analytic and invertible on a Cauchy contour Γ, we use state–space realizations to construct the
spectral factorization of W (λ) with respect to Γ in the general case when there is no minimal
factorization. Besides the simple algebraic nature of the arguments, we extend the theory of
non–minimal Wiener–Hopf factorization of biproper rational matrices to the case of matrices
which are polynomial, strictly proper or improper.
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1. INTRODUCTION

Let W (λ) be a square (not necessarily proper) m × m
rational matrix function (rmf) and Γ a Cauchy contour
in the complex plane C such that W (λ) is analytic and
invertible on Γ, i.e., W (λ) has neither poles nor zeros on
Γ. Denote by Γ+ (Γ−) the interior (exterior) domains of
Γ. The problem of writing W (λ) as

W (λ) = W+(λ)W−(λ), (1)

where W+(λ) and W−(λ) are analytic and invertible on
Γ− ∪ Γ and Γ+ ∪ Γ, respectively, is called the spectral
factorization with respect to Γ. Provided the two spectral
factors W+(λ) and W−(λ) exist, (1) is actually a minimal
factorization in the sense that

δ(W ) = δ(W+) + δ(W−), (2)

where δ(W ) denotes the McMillan degree of the rmfW (λ).

The spectral factorization problem (1) is solvable if and
only if some complementarity condition is met (see Bart
et al. (1980)) – and in this case is called minimal. The
complementarity condition is written on the basis of a
geometric factorization principle expressed in terms of
invariant subspaces of the pole and system pencil asso-
ciated with a minimal state–space realization of W (λ).
Otherwise, in order to separate the two spectral factors
one has to relax the underlying minimality requirement (2)
and add certain poles and zeroes in Γ+ and Γ− in order
to force the fulfillment of the respective complementarity
condition. Once the minimality requirement relaxed, the
spectral factorization problem is replaced with

W (λ) = W+(λ)D(λ)W−(λ), (3)

where the spectral factors W−(λ) and W+(λ) fulfill the
same requirements as before and D(λ) is a diagonal rmf
of the form

diag {
(
λ− λ−

λ− λ+

)k1

,

(
λ− λ−

λ− λ+

)k2

, . . . ,

(
λ− λ−

λ− λ+

)km

},
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where λ+ and λ− are two arbitrary finite points in Γ+

and Γ−, respectively, different from the poles and zeroes
of W (λ), and k1 ≤ k2 ≤ · · · ≤ km are a set of integers
called the Wiener–Hopf factorization indices (see Bart
et al. (1986b, 2008)). Though the factorization indices
are unique, the spectral factorization problem (3) has
many different solutions corresponding to various possi-
ble choices of the additional canceling poles and zeroes,
resulting in highly non–unique spectral factors. Fortunate
enough, fixing the additional poles and zeroes λ+ and λ−
recaptures to a large extent the uniqueness of the non–
minimal factorization (3).

The spectral factorization both in its minimal and non–
minimal versions plays important parts as main technical
tool in solving robust control, estimation and filtering
problems formulated in Krein spaces with definite and
indefinite metric, problems in system identification, signal
processing, network and circuit theory, to mention just
a few (see for example Kimura (1997); Ionescu et al.
(1999); Hassibi et al. (1999)). In particular, systems of
singular integral equations, vector–valued Wiener–Hopf
integral equations, equations involving block Toeplitz and
Hankel matrices can be explicitly solved when a spectral
factorization of the symbol of the equation is known (see
for example Gohberg et al. (1974); Krein (1962)).

Since many fundamental problems in these branches of
science can be solved once the factors are known, a wealth
of research efforts has been invested in their construction
and finding their various properties. Albeit their huge
importance, all approaches proposed so far in the non–
minimal case fail short in two respects: the restrictive
hypotheses (W (λ) should be proper and without zeroes
at infinity) and the exceedingly cumbersome constructions
used (see for example Bart et al. (1986a,b, 2008)).

In this paper we remedy these drawbacks by giving the
main steps of a simple and self–contained algebraic deriva-
tion of the non–minimal spectral factorization (3) of a rmf
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W (λ) which may be polynomial, strictly proper or even
improper. Based on elementary operations on state–space
realizations, we construct both the spectral factors and
the Wiener–Hopf factorization indices. The main result is
expressed in terms of a special type of realization – called
centered – that exhibits the same attractive features and
allows for formulas that bear essentially the same elegant
simplicity of the proper case.

Our approach is to reduce the factorization problem to
finding a minimal McMillan degree invertible rmf that
cancels simultaneously the poles and zeroes of W (λ) in
the interior (or in the exterior) of Γ. This is a general-
ization of the factorization techniques used in Oară et al.
(2000, 2009b) where either some poles or some zeroes are
cancelled by choosing a suitable left factor.

The paper is organized as follows. Section 2 contains
some notation, definitions, and preliminaries on centered
realizations. Section 3 states and proves the main result
which is based on a technical lemma elaborated in an
Appendix. Some concluding remarks are in Section 4.

2. PRELIMINARIES

By C we denote the complex plane and let C := C ∪ {∞}
be the closed complex plane. In will stand for the identity
matrix of size n × n. The subscript is dropped if the size
is clear from the context. We use Λ(A−λE) to denote the
set of generalized eigenvalues of the matrix pencil A− λE
(finite and infinite). By W (λ) we denote a rational matrix
function with real or complex coefficients in the variable
λ.

Let W (λ) be a general p × m rmf (possibly improper or
polynomial). For W (λ) we introduce a particular type
of realization called centered. Centered realizations have
been previously used to solve various problems for singu-
lar systems whose transfer matrix function are improper
Gohberg et al. (1992); Rakowski (1992); Oară et al. (2000).
When associated with singular systems, centered real-
izations have the main advantage (over the more com-
mon generalized state–space realizations) of minimal order
equal to the McMillan degree of the underlying system.
They also allow to recapture all nice properties of standard
state–space realizations. To define a centered realization
we fix first a λ0 ∈ C and further α, β such that α = 1,
β = 0, if λ0 = ∞, and α = λ0, β = 1, if λ0 is finite.
Throughout the paper for a fixed λ0 we assume this im-
plicit choice of α and β. Denote also p(λ) := α − βλ. A
realization centered at λ0 of W (λ) is a representation of
the form

W (λ) = D+C(λE−A)−1B(α−βλ) =:

[
A− λE B

C D

]
λ0

,

(4)
where A − λE is a regular pencil (i.e., it is square and
det(A−λE) ̸≡ 0), and the matrices A,E,B,C,D are n×n,
n×n, n×m, p×n, p×m, respectively, with real or complex
elements. The positive integer n is called the order (or the
dimension) of the realization (4). A realization is called
minimal if its order is as small as possible. In particular,
if λ0 = ∞ we simply drop the index λ0 from the notation
introduced in the right–hand side of (4) and get the well–
known generalized state–space realization used throughout

the control theory of singular systems. Therefore, a gen-
eralized state–space (or descriptor) realization is simply a
realization centered at λ0 = ∞. Centered realizations can
be obtained alternatively either by the procedures exposed
in Rakowski (1992) (starting from the rmf representation)
or by the algorithmic procedure in Section 5 of Oară
et al. (2009a) which allows switching back and forth to
a generalized state–space realization.

A realization (or the pair (A − λE,B)) is called control-
lable if for all finite λ we have rank [A− λE B ] = n
and rank [E B ] = n (corresponding to λ = ∞). Anal-
ogously, we say that a realization (4) is observable (or
the pair (C,A − λE) is observable) provided the pair
(AT − λET , CT ) is controllable. We call the realization
(4) proper if αE − βA is invertible and normalized if in
addition αE − βA = I . Notice that W (λ) has a proper
realization centered at λ0 only if it has no poles at λ0. If
the realization (4) is proper then D = W (λ0).

Two invertible matrices S and T acting on a realization
(4) as [

S(A− λE)T−1 SB
CT−1 D

]
λ0

define a state–space equivalence transformation, and they
leave unchanged the underlying transfer function matrix.

Remark 1. By a preliminary equivalence, we can assume
a proper realization to be always normalized.

We have the following lemma which gives certain proper-
ties of centered realizations.

Theorem 2. Let W (λ) be a p×m rmf of McMillan degree
n and λ0 ∈ C.

(I) Any realization (4) of W (λ) has an order greater
or equal to n, with equality possible if and only if the
realization is proper.

(II) A proper realization (4) has minimal order n (and
it is called minimal) if and only if it is controllable and
observable.

(III) Given two proper minimal realizations

W (λ) =

[
A1 − λE1 B1

C1 D1

]
λ0

=

[
A2 − λE2 B2

C2 D2

]
λ0

,

then D1 = D2 and there exist two unique invertible
matrices S and T that define a state–space equivalence
transformation between the two realizations, i.e., S(A1 −
λE1)T

−1 = A2 − λE2, SB1 = B2, C1T
−1 = C2.

(IV) Given a centered realization (4) of W (λ), if λ0 is
neither a pole nor a zero of W (λ), then the following hold.
i) rank (D) = rank n(W (λ)); ii) W (λ) is invertible if and
only if D is invertible; iii) if D is invertible, a centered
realization for the inverse is given by W−1(λ)

=

[
A− αBD−1C − λ(E − βBD−1C) BD−1

−D−1C D−1

]
λ0

(5)

and is proper as well. Provided the realization (4) is
minimal/controllable/observable then (5) is also mini-
mal/controllable/observable.

The proof is straightforward and is omitted for brevity.
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With any realization (4) we associate two pencils that play
an important role in the sequel: the pole pencil PW (λ) =
A− λE and the system pencil

SW (λ) =

[
A− λE Bp(λ)

C D

]
=

[
A αB
C D

]
− λ

[
E βB
0 0

]
.

(6)
The next theorem shows that for a minimal realization
there is a one–to–one correspondence between the poles,
zeros, and their partial multiplicities on one side, and the
generalized eigenvalues of the associated pole and system
pencils on the other side (see Theorems 1 and 2 in Verghese
et al. (1979)).

Theorem 3. Let W (λ) be given by a minimal realization
(4) of order n. Then we have: If µ ∈ C is a pole (zero)
of W (λ) with partial multiplicities k1 ≥ k2 ≥ . . . ≥ kg,
then µ is a generalized eigenvalue of PW (λ) (SW (λ)) with
partial multiplicities s1 ≥ s2 ≥ . . . ≥ sh, where{
g = h, and ki = si, i = 1, . . . , g, if µ ̸= λ0,
g ≤ h, and ki = si − 1, i = 1, . . . , g, if µ = λ0.

For our main results we need the following solution to the
generalized eigenvalue assignment problem (an extension
of Lemma 4.1 in Oară et al. (2000)).

Lemma 4. Assume (A − λE,B) is a controllable pair,
with A, E ∈ Cn×n, B ∈ Cn×m, having the nonzero
row Kronecker indices (controllability indices) n1, . . . , nk,

(
∑k

i=1nk = n). Let an arbitrary λ• ∈ C and α, β ∈ C, not
both zero, such that α

β ̸∈ Λ(A− λE) and α
β ̸= λ•.

1. There exists a matrix F ∈ Cm×n such that

Λ(A− λE +BF (α− λβ)) = {λ•}. (7)

2. There exist an equivalence transformation (S, T ), an
invertible matrix V ∈ Cm×m, and the matrix F ∈ Cm×n

can be chosen such that

S(A−λE+BV F (α−λβ))T−1 = diag {A1, . . . , Ak}−λIn,
(8)

SBV =

[
diag {b1, . . . , bk}

... 0n×(m−k)

]
, (9)

where Ai ∈ Cni×ni , bi ∈ Cni×1 are given explicitly by

Ai :=


0 1

. . .
1

−γ0 −γ1 . . . −γni−1

 , bi =


0
0
...
1

 , (10)

(λ− λ•)
ni = λni + γni−1λ

ni−1 + . . .+ γ1λ+ γ0.

Proof. Part 1. is a particular case of Lemma 4.1 in
Oară et al. (2000). For part 2, assume βA − αE =
I. This is always possible by performing a preliminary
equivalence transformation (see also Remark 1). Further,
by the conformal mapping λ = (αz + β)/(βz − α) the
point λ• changes to z• which is obviously finite. Define
Az−zEz := αA+βE−z(βA−αE) and Bz := (α2+β2)B.
With the transformed data we have reduced (7) to

Λ(Az +BzF − zEz) = {z•}, (11)

with Ez = I, which is actually a standard eigenvalue
problem. From the controllability of the pair (A−λE, B),
we get the controllability of the pair (Az, Bz). Thus
(11) is a standard eigenvalue assignment problem for the
controllable pair (Az, Bz) and has always a solution F

which is the solution of the original problem (7) as well.
From Section 2.8.1 in Ionescu et al. (1986), it follows
that for the pair (Az, Bz) there exists an equivalence
transformation T , an invertible matrix V and a feedback
matrix F such that T (Az − λI + BzV F (α − λβ))T−1 =
diag {Az1, . . . , Azk} − λIn, where Azi, i = 1, . . . , k, are
companion matrices with characteristic polinomials (z −
z0)

ni , and

TBzV =

[
diag {bz1 , . . . , bzk}

... 0n×(m−k)

]
,

where bzi , have the same form as bi in (10), i = 1, . . . , k.
Mapping back to the original variable λ we get, by using
an appropriate update of the transformation matrices S,
T , V and F , precisely (8)–(10).

The following formula which will be used in the sequel
can be easily proved (provided all the intervening matrices
have appropriate dimensions)[

A1 − λE1 B1

C1 D1

]
λ0

[
A2 − λE2 B2

C2 D2

]
λ0

=

A1 − λE1 B1C2(α− λβ) B1D2

0 A2 − λE2 B2

C1 D1C2 D1D2


λ0

. (12)

3. MAIN RESULT

Here follows the precise statement of the main factoriza-
tion result.

Theorem 5. Let Γ be an arbitrary given Cauchy contour
and W (λ) an m × m rmf analytic and invertible on Γ.
Denote by Γ+ and Γ− the interior and the exterior domains
of Γ, respectively. Then W (λ) has a factorization

W (λ) = W+(λ)D(λ)W−(λ), (13)

where W+(λ) and W−(λ) are analytic and invertible on
Γ− ∪ Γ and Γ+ ∪ Γ, respectively, and D(λ) is a diagonal
rmf of the form

= diag {
(
λ− λ−

λ− λ+

)k1

,

(
λ− λ−

λ− λ+

)k2

, . . . ,

(
λ− λ−

λ− λ+

)km

}.

(14)
Here λ+ and λ− are two arbitrary finite points in Γ+ and
Γ−, respectively, different from the poles and zeroes of
W (λ), and k1 ≤ k2 ≤ · · · ≤ km are a set of integers called
the Wiener–Hopf indices of the factorization.

As opposed to the spectral factors W+(λ) and W−(λ),
the Wiener–Hopf indices are uniquely determined by the
original function W (λ) and the contour Γ. If k1 = k2 =
. . . = km = 0, the factorization is minimal, otherwise it is
non–minimal.

Before proving the theorem, we recall and adapt first a
technical tool used in Oară et al. (2000) for the non–
canonical coprime factorization with J–inner denomina-
tor. This tool will be used further on to state a preparatory
lemma used in the proof of the main result.

Assume the analytic and invertible on Γ rmf W (λ) is given
by the minimal centered realization

W (λ) =

[
A− λE B

C D

]
λ0

(15)
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where a natural choice of λ0 is on the Cauchy contour
Γ. Since D = W (λ0) is invertible, without restricting
generality, assume D = I. The inverse of W (λ) can be
given alternatively by the minimal realizations

W−1(λ) =

[
F − λK G

H I

]
λ0

=

[
A− αBC − λ(E − βBC) B

−C I

]
λ0

,
(16)

where the first is a notation for an arbitrary realization
while the second is constructed from (15) by using the
inversion formula (5). Using part (III) of Theorem 2,
there is a unique state–space equivalence transformation
between the two realization (16) defined by S and T such
that

S(A− αBC − λ(E − βBC))T−1 = F − λK,

SB = G,−CT−1 = H.

This equivalently implies the existence of two nonsingular
matrices S and T such that

S(A− λE)− (F − λK)T = GC(α− λβ). (17)

With appropriate bases changes, assume the poles given by
the generalized eigenvalues of A−λE belonging to Γ+ and
the zeroes given by the generalized eigenvalues of F − λK
belonging to Γ+ are already separated such that

A− λE =

[
A+ − λE+ A± − λE±

0 A− − λE−

]
, C = [C+ C− ] ,

F − λK =

[
F− − λK− F± − λK±

0 F+ − λK+

]
, G =

[
G−
G+

]
,

(18)

S =

[
S1 S2

S+ S3

]
, T =

[
T1 T2

T+ T3

]
,

where A+−λE+ specifies the poles and F+−λK+ specifies
the zeroes in Γ+, while A−−λE− specifies the poles while
F−−λK− specifies the zeroes in Γ− (see Theorem 3). With
(18) in (17) we get from the (2,1)–block entry

S+(A+ −λE+)− (F+ −λK+)T+ = G+C+(α−λβ). (19)

Remark 6. If we have an equation (17) with all intervening
matrices known and T invertible, then the realizations of
both W (λ) and W−1(λ) are well–defined in terms of these
matrices. Indeed, evaluating (17) at λ0 = α

β , we get

S(A− λ0E)− (F − λ0K)T = 0 (20)

and since A − λ0E and F − λ0K are both invertible as
λ0 is neither a pole nor a zero of W (λ), it follows that
S is invertible as well, B = S−1G and H = −CT−1.
Therefore, whenever we have an equation of the form (17),
with T (and implicitly S) invertible, we may think at an
associated rational matrix W (λ) with a realization defined
in terms of the matrices involved in this equation,

W (λ) =

[
A − λE S−1G

C I

]
λ0

,W−1(λ) =

[
F − λK G
−CT−1 I

]
λ0

.

Remark 7. Given equation (19), we may look at (17) and
(18) as to an embedding equation. Alternatively, given (17)
and the partition (18), we may look at equation (19) as to
a restriction corresponding to the poles and zeroes in Γ+.

The key to the factorization process are the matrices S+

and T+: if they are square and nonsingular then W (λ) has
a spectral factorization (1) which is minimal, i.e., fulfills
(2) (see Bart et al. (1980)). Otherwise, there is only a

non–minimal factorization (3) and some poles and zeroes
should be added in order to separate in the two spectral
factors the poles and zeroes in Γ+ and Γ−.

The needed technical tool is formalized as a lemma below
whose proof is deferred to an Appendix. The first point is
a customization of a result from Oară et al. (2000).

Lemma 8. Suppose (19) is given, where S+, T+ ∈ Rm×n,
the pair (F+−λK+, G+) is controllable, the pair (C+, A+−
λE+) is observable, and let r := rankT+.

1. There exists an embedding equation

S(A− λE)− (F − λK)T = GC(α− λβ) (21)

of (19), where the matrices in (21) are depicted
in (18), with both T and S invertible of minimal
dimension m+n−r, where Λ(A−−λE−) and Λ(F−−
λK−) can be arbitrarily specified.

2. Let (21) and

S̃(Ã− λẼ)− (F̃ − λK̃)T̃ = G̃C̃(α− λβ) (22)

be two minimal embedding equations of (19), with

invertible S, T , S̃ and T̃ . Denote by Ŵ (λ) and W̃ (λ)
the rmf associated with (21) and (22), respectively
(see Remark 6). Then all poles given by A+ − λE+

and zeroes given by F+ − λK+ of both Ŵ (λ) and

W̃ (λ) are canceled in Ŵ−1(λ)W̃ (λ).
3. The two embedding equations (21) and (22) at point

2 can always be constructed such that Ŵ−1(λ)W̃ (λ)
is diagonal of the form (14).

Remark 9. Lemma 8 allows an extension of the results in
Oară et al. (2000) and Oară et al. (2009b) in the sense
that it characterizes the class of minimal McMillan degree
invertible rmf which cancel simultaneously the poles and
zeroes in Γ+ of a rmfW (λ). OnceW (λ) given by a minimal
realization (which automatically defines the first equation
(17) and the reduced equation (19) corresponding to the

poles and zeroes in Γ+), all rmf W̃ (λ) having minimal
McMillan degree that simultaneously cancel in the product

W̃ (λ)−1W (λ) the poles A+ − λE+ and zeroes F+ − λK+

are obtained by constructing all minimal embeddings (22)

of (19), with invertible S̃ and T̃ . Indeed, the embedding

equation (22) uniquely defines W̃ (λ) via

W̃ (λ) =

[
Ã − λẼ S̃−1G̃

C̃ I

]
λ0

.

Proof.[Theorem 5]. Assume W (λ) is given by the minimal
centered realization (15). Form equation (17) and restrict
it to (19) by splitting the poles and zeroes in the two
disjoint regions Γ+ and Γ−. Getting a restriction (19) of
equation (17) is equivalent to separating first the poles
and computing further the maximal left deflating subspace
with spectrum in Γ+ of the regular system pencil. Clearly,
the pair (F+ − λK+, G+) is controllable while the pair
(C+, A+ − λE+) is observable. Therefore, we are in the
position of Lemma 8. If S+ and T+ are either non–square
or non–invertible, we construct two embedding equations
(21) and (22) of minimal dimensions, which define the

associated rmf denoted Ŵ (λ) and W̃ (λ), respectively.
Lemma 8 guarantees that the two embedding equations

can be constructed such that Ŵ (λ) has all additional

poles and zeroes at a specified point λ+ ∈ Γ+, W̃ (λ)
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has all additional poles and zeroes at a specified point

λ− ∈ Γ−, and W̃−1(λ)Ŵ (λ) is diagonal of the form (14).

Finally, define in the factorization (13) W+(λ) := Ŵ (λ),

D(λ) := Ŵ−1(λ)W̃ (λ), W−(λ) = W̃−1(λ)W (λ). By con-
struction,W+(λ) is analytic and invertible on Γ−∪Γ,D(λ)
is diagonal of the form (14), while from point 2 of Lemma

8 we get by setting Ŵ (λ) := W̃ (λ) and W̃ (λ) := W (λ)
that all poles and zeroes in Γ+ are canceled in the product

W−(λ) = W̃−1(λ)W (λ). Hence W−(λ) is analytic and
invertible on Γ+ ∪ Γ. This concludes the proof.

4. CONCLUSIONS

We have extended the non–minimal factorization of a
transfer function matrix W to the cases in which W (λ) is
improper, strictly proper, or even polynomial. En route, we
have considerably simplified the state–space construction
of the spectral factors and Wiener–Hopf indices even in the
standard case (when W (λ) is biproper and invertible at in-
finity). Though constructive, our proof should be modified
to some extent in order to provide a numerically–sound
algorithm. To this end, the nonorthogonal bases transfor-
mations used in several instances should be avoided or
replaced by orthogonal ones.

The results may be extended in several directions. The
most challenging generalization is to the singular case
where the rational matrix W (λ) is non–invertible or even
non-square but it still has no zeroes or poles on the
Cauchy contour. In this case the constructive technique
should be modified to some extent, although it essentially
should remain the same. The central concept will be the
left proper deflating subspace (see Ionescu et al. (1999))
with a certain spectrum of the zero pencil of W (λ). This
proper deflating subspace replaces equation (19) in the
singular case while makes the tight connection between the
poles and zeroes of W (λ) inside and outside the Cauchy
contour. Again, the minimality and non–minimality of the
factorization (13) will be decided by the invertibility of
a certain matrix, a sort of “disconjugacy” of the proper
deflating subspace (see Ionescu et al. (1999) for details).
For a given rational matrix of dimension m×n and normal
rank r the resulting spectral factor W+(λ) in (13) will
have dimension m×r and will be left invertible, the factor
W−(λ) will be r × n and right invertible, while the r × r
invertible diagonal factor D(λ) will have some poles and
zeroes in Γ− and Γ+. In this non–minimal singular case
the freedom in choosing additional poles and zeroes is
amplified by the singularity of W (λ).

APPENDIX

Remark 10. We notice first that an equivalence transfor-
mation on the realization or a change of the input and out-
put bases of W (λ) has no effect on the factorization (13).
Indeed, an equivalence transformation on the realization
leaves W (λ) unchanged, while a change of the input or
output basis comes up to a pre– or post–multiplication of
W (λ) with a constant invertible matrix V and a simple
update of the right or left spectral factor to W−(λ)V and
VW+(λ), respectively.

Proof.[Lemma 8]. 1. Evaluating (19) at λ0, we get that T+

and S+ always have the same rank, i.e., r := rankT+ =
rankS+. We look now to construct an equation of form
(21), with invertible T and S, which can be written with
the partition in (18) in the explicit form[

S1 S2

S+ S3

] [
A+ − λE+ A± − λE±

0 A− − λE−

]
−
[
F− − λK− F± − λK±

0 F+ − λK+

] [
T1 T2

T+ T3

]
=

[
G−
G+

]
[C+ C− ] p(λ). (23)

First, it is easy to see that a minimal invertible embedding
T of T+ has size m+ n− r. Moreover, without restricting
generality we may assume that

T+ = S+ =

[
0 Ir
0 0

]
which can be always achieved by a suitable equivalence
transformation (see Remark 10). We choose the extension

T =

[
T1 T2

T+ T3

]
=

 In−r 0 0
0 Ir 0
0 0 Im−r

 =

[
S1 S2

S+ S3

]
= S

(24)
and show how we can determine the remaining unknown
matrices in (23). Writing component-wise the embedded
equation[

I 0 0
0 I 0
0 0 I

]A+11 − λE+11 A+12 − λE+12 Ax
±1

− λEx
±1

A+21 − λE+21 A+22 − λE+22 A±2 − λEx
±2

0 0 Ax
− − λEx

−


−

[
F x
− − λKx

− F x
±1

− λKx
±1

F x
±2

− λKx
±2

0 F+11 − λK+11 F+12 − λK+12

0 F+21 − λK+21 F+22 − λK+22

][
I 0 0
0 I 0
0 0 I

]

=

[
Gx

−
G+1

G+2

]
[C+1 C+2 Cx

− ] p(λ), (25)

where for clarity the unknown matrices have been tem-
porarily marked by an additional upper-script “x”, we get

A+11 − λE+11 − (F x
− − λKx

−) = Gx
−C+1p(λ), (26)

A+12 − λE+12 − (F x
±1

− λKx
±1

) = Gx
−C+2p(λ), (27)

Ax
±1

− λEx
±1

− (F x
±2

− λKx
±2

) = Gx
−C

x
−p(λ), (28)

A+21 − λE+21 = G+1C+1p(λ), (29)

A+22 − λE+22 − (F+11 − λK+11) = G+1C+2p(λ), (30)

Ax
±2

− λEx
±2

− (F+12 − λK+12) = G+1C
x
−p(λ), (31)

0 = G+2C+1p(λ), (32)

−(F+21
− λK+21

) = G+2
C+2

p(λ), (33)

Ax
− − λEx

− − (F+22 − λK+22) = G+2C
x
−p(λ). (34)

Since the pair (F+ − λK+, G+)

= (

[
F+11 − λK+11 F+12 − λK+12

F+21 − λK+21 F+22 − λK+22

]
,

[
G+1

G+2

]
)

(33)
= (

[
F+11 − λK+11 F+12 − λK+12

−G+2C+2p(λ) F+22 − λK+22

]
,

[
G+1

G+2

]
) (35)

is controllable, it follows from (35) that the pair (F+22 −
λK+22 , G+2) is controllable as well. In a completely similar
way, since (C+, A+ − λE+) is observable, it follows that
(C+1

, A+11
− λE+11

) is observable as well. As we will see
later on, these pairs completely specify the Wiener-Hopf
indices of the factorization.



Control Engineering and Applied Informatics 15

We determine the unknown matrices in (26)–(34) as fol-
lows. We solve two generalized pole placement problems
defined by equations (26) and (34), and determine Gx

− and
Cx

− such that the matrix pencils F x
−−λKx

− and Ax
−−λEx

−
have their spectrum placed in any desired location. The
pole placement problems can be always solved since the
hypotheses of Lemma 4 are in force. In particular, Gx

− and
Cx

− specify through equations (27) and (31) the pencils
F x
±1

−λKx
±1

and Ax
±2

−λEx
±2

. Finally, we may choose freely
the Ax

±1
−λEx

±1
and F x

±2
−λKx

±2
to satisfy equation (28).

The remaining equations are identically satisfied since we
assumed that (19) holds. This ends the construction of the
embedding.

2. Writing (21) and (22) in partitioned form we get (23)
and with obvious notation

[
S̃1 S̃2

S+ S̃3

] [
A+ − λE+ Ã± − λẼ±

0 Ã− − λẼ−

]

−
[
F̃− − λK̃− F̃± − λK̃±

0 F+ − λK+

] [
T̃1 T̃2

T+ T̃3

]

=

[
G̃−
G+

] [
C+ C̃−

]
p(λ), (36)

respectively. Since S, T , S̃ and T̃ are invertible, we can
define the associated rational matrices

Ŵ (λ) =

[
A − λE S−1G

C I

]
λ0

, Ŵ−1(λ) =

[
F − λK G
−CT−1 I

]
λ0

,

(37)

W̃ (λ) =

[
Ã − λẼ S̃−1G̃

C̃ I

]
λ0

, W̃−1(λ) =

[
F̃ − λK̃ G̃

−C̃T̃−1 I

]
λ0

.

(38)
We have

Ŵ−1(λ)W̃ (λ) =

 F− − λK− F± − λK± G−
0 F+ − λK+ G+

H− H+ I


λ0

×

A+ − λE+ Ã± − λẼ± B̃+

0 Ã− − λẼ− B̃−
C+ C̃− I


λ0

=


F− − λK− F± − λK± G−C+p(λ) G−C̃−p(λ) G−

0 F+ − λK+ G+C+p(λ) G+C̃−p(λ) G+

0 0 A+ − λE+ Ã± − λẼ± B̃+

0 0 0 Ã− − λẼ− B̃−

H− H+ C+ C̃− I


λ0

,

(39)

where we have denoted [H− H+ ] := −CT−1 and[
B̃+

B̃−

]
:= S̃−1G̃. Applying on the realization in the right–

hand side of (39) the equivalence transformation defined
by the matrices

I 0 −S1 0

0 I −S+ −S̃3

0 0 I 0
0 0 0 I

 ,


I 0 T1 0

0 I T+ T̃3

0 0 I 0
0 0 0 I

 ,

and using the equalities (23) and (36) we get Ŵ−1(λ)W̃ (λ)

=


F− − λK− F± − λK± 0 X1 − λX2 X3

0 F+ − λK+ 0 0 0

0 0 A+ − λE+ Ã± − λẼ± B̃+

0 0 0 Ã− − λẼ− B̃−

H− H+ 0 H+T̃3 + C̃− I


λ0

=

 F− − λK− X1 − λX2 X3

0 Ã− − λẼ− B̃−

H− H+T̃3 + C̃− I


λ0

, (40)

where X1 − λX2 := (F± − λK±)T̃3 − S1(Ã± − λẼ±) +

G−C̃−p(λ),X3 := G−−S1B̃+ and the last equality follows
by removing the uncontrollable and unobservable parts.
Hence the conclusion.

3. Construct first two different embeddings (21) and (22)

of equation (19), having the same invertible T = T̃ and

the same invertible S = S̃ given by (24). With these two

embeddings associate through (37) the rmfs Ŵ (λ) and

W̃ (λ). Using point 2 of this lemma, we have D(λ) :=

Ŵ−1(λ)W̃ (λ) =

 F− − λK− X1 − λX2 X3

0 Ã− − λẼ− G+2

−C+1 C̃− − C− I


λ0

, (41)

where now X1−λX2 = G−C̃−p(λ)+F±2 −λK±2 −(Ã±1 −
λẼ±1), X3 = G−−G̃−, and we have used (40) in which we

have replaced T = T̃ = S = S̃ by the explicit expressions
in (24).

From the construction made at point 1. of this lemma, we
have an additional freedom in choosing the pencils in the
left–hand side of equation (28). With the actual notation,
we have the freedom to specify the pencils in the left–
hand side of A±1 − λE±1 − (F±2 − λK±2) = G−C−p(λ)

and Ã±1 −λẼ±1 −(F̃±2 −λK̃±2) = G̃−C̃−p(λ). We choose

F±2 − λK±2 and Ã±1 − λẼ±1 such that the (1,2) element
in the realization (41) is zero, i.e., X1 − λX2

= G−C̃−p(λ) + F±2 − λK±2 − (Ã±1 − λẼ±1) = 0. (42)

We show further that the feedback matrices G− and C−
can always be chosen to simultaneously fulfil the following
properties:

(a) Im (G∗
−) ⊂ Im (C+1); (b) Im (C−) ⊂ Im (G∗

+2
);

(c)G−C− = 0.
(43)

Since G∗
− is an m× (n− r) matrix and Cm = Ker (C∗

+1)⊕
Im (C+1), we can write

G∗
− = NL2 + C+1L1, (44)

where N spans the null space (kernel) of C∗
+1 and L1

and L2 are two appropriate matrices. In particular, it
follows G−C+1 = (L∗

1C
∗
+1 + L∗

2N
∗)C+1 = L∗

1C
∗
+1C+1 and

therefore in the generalized eigenvalue assignment problem
A+11 −λE+11 − (F−−λK−) = G−C+1p(λ) we can simply
replace G∗

− with C+1L1 proving in this way (a). Part (b)
follows analogously. From (a) and (b) there exist matrices
M1 and M2 such that G∗

− = C+1M1 and C− = G∗
+2

M2

and we get G−C− = M∗
1C

∗
+1G

∗
+2M2 = 0 where for the

last equality we have used (32).

We finally show that D(λ) can be constructed diagonal.

From (b) in (43) we can always choose C− and C̃− in
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Im (G∗
+2

) while from (a) we can always chose G∗
− and G̃∗

−
in Im (C+1) from where it follows ∆G−∆C− = 0, where

∆C− := C̃− − C−, ∆G− := G− − G̃−. (45)

We also have [
∆G−
G+2

]
(43)(a)
=

[
PC∗

+1
G+2

]
,

[−C+1 ∆C− ]
(43)(b)
= [−C+1 −G∗

+2Q ] ,

(46)

for two appropriate matrices P and Q. Let V be a unitary
matrix that compresses [C+1 G∗

+2 ] by rows such that

V [C+1 G∗
+2 ] =

[
C+11 (G+2c)

∗

C+1c 0
0 0

]
(47)

where (G+2c)
∗ and C+1c have full row rank. We have

V D(λ)V ∗

(41),(42),(45)
= V

 F− − λK− 0 ∆G−
0 Ã− − λẼ− G+2

−C+1 ∆C− I


λ0

V ∗

(46),(47)
=


F− − λK− 0 PC∗

+11 PC+1c 0

0 Ã− − λẼ− G+2c 0 0
−C+11 −(G+2c)

∗Q I 0 0
−C+1c 0 0 I 0

0 0 0 0 I


λ0

=


F− − λK− 0 0 PC+1c 0

0 Ã− − λẼ− G+2c 0 0
0 −G∗

+2cQ I 0 0
−C+1c 0 0 I 0

0 0 0 0 I


λ0

(48)

=:

[
D1(λ) 0 0

0 D2(λ) 0
0 0 I

]
,

where the equality in (48) follows because C+11 = 0 which

in turn follows from 0
(32)
= G+2C+1

(47)
= G+2cC+11 and the

full column rank of G+2c.

The last step is to show that D1(λ) and D2(λ) can
themselves be diagonalized and put in the form (14), from
where, by a mere permutation, we get (13). We illustrate
in detail only for

D1(λ) = I +∆Cc
−(λẼ− − Ã−)

−1Gc
+2

p(λ), (49)

where ∆Cc
− = C̃c

−−Cc
− := −G∗

+2cQ, since the rest follows

by duality. Recall first that D−1
1 (λ) = I − ∆Cc

−(λE− −
A−)

−1Gc
+2

p(λ), λẼ−− Ã− and λE−−A− are constructed
by solving the generalized eigenvalue problems in (34), i.e.,

A− − λE− = (F+22 − λK+22) +Gc
+2

Cc
−p(λ), (50)

Ã− − λẼ− = (F+22 − λK+22) +Gc
+2

C̃c
−p(λ), (51)

respectively, and the pair (F+22 − λK+22 , G
c
+2

) is control-
lable. According to point 2 of Lemma 4, choose Cc

− in (50)
(after applying the transformation matrices S, T and V )
such that A− −λE− is in the form (8), G+2 is in the form

(9), and λ• := λ−. Proceed similarly for C̃c
− in (51) such

that Ã− − λẼ− is in the form (8), G+2 is in the form
(9), and λ• := λ+. By construction, we get (49) in the

diagonal form D1(λ) = diag {
(

λ−λ−
λ−λ+

)n1

, . . . ,
(

λ−λ−
λ−λ+

)nk

},
where n1, . . . , nk are the nonzero Kronecker indices of the
pair (F+22 − λK+22 , G

c
+2

).

Dual arguments apply to the pair (C+1 , A+11 −λE+11) or,
equivalently, to the pair (Cc

+1
, A+11 − λE+11). This ends

the whole construction.
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