
CEAI, Vol.12, No. 3, pp. 34-40, 2010 Printed in Romania

GPU cards as a low cost solution for
efficient and fast classification of high
dimensional gene expression datasets

A. Benso ∗ S. Di Carlo ∗ G. Politano ∗ A. Savino ∗ A. Scionti ∗

∗ Politecnico di Torino, Control and Computer Engineering
Department, Corso Duca degli Abruzzi 24, 10129, Torino, Italy

(e-mail: firstname.lastname@polito.it).

Abstract: The days when bioinformatics tools will be so reliable to become a standard aid
in routine clinical diagnostics are getting very close. However, it is important to remember
that the more complex and advanced bioinformatics tools become, the more performances are
required by the computing platforms. Unfortunately, the cost of High Performance Computing
(HPC) platforms is still prohibitive for both public and private medical practices. Therefore,
to promote and facilitate the use of bioinformatics tools it is important to identify low-cost
parallel computing solutions. This paper presents a successful experience in using the parallel
processing capabilities of Graphical Processing Units (GPU) to speed up classification of gene
expression profiles. Results show that using open source CUDA programming libraries allows to
obtain a significant increase in performances and therefore to shorten the gap between advanced
bioinformatics tools and real medical practice.

Keywords: bioinformatics, pattern recognition, parallel computing, software performance.

1. INTRODUCTION

Over the past few years, the amount of biological informa-
tion generated by the scientific community has explosively
grown thanks to important advances in both molecular
biology and genomic technologies. To be fruitfully ana-
lyzed, this vast amount of data requires both advanced
specialized bioinformatics tools and powerful computing
platforms. A common characteristic to several bioinfor-
matics applications is the high data dimensionality and
the repetitive execution of heavy computational cycles.

Analysis and classification of gene expression profiles from
DNA microarrays is a typical example of a fundamental
task in bioinformatics. DNA microarrays are small solid
supports, e.g., membranes or glass slides, on which se-
quences of DNA are fixed in an orderly arrangement. Tens
of thousands of DNA probes can be attached to a single
slide and used to analyze and measure the activity of genes.
Scientists are using DNAmicroarrays to investigate several
phenomena from cancer to pest control. DNA microarrays
allow to measure changes in gene expression and thereby
learn how cells respond to a disease or to a particular
treatment (Gibson, 2003; Larranaga et al., 2006).

Microarray data analysis and classification involves the
analysis and correlation of thousands of variables. It should
be further considered that future technologies continuously
increase the amount of information provided by these sup-
ports (the new Affymetrix GeneChipTMarray maps 500K
probes on a single device). Special-purpose hardware, as
for instance clusters of computers or Field-Programmable
Gate Arrays (FPGA) are interesting options to elaborate
this huge amount of data. However, they tend to be very

expensive and not largely available to many users. For
these reasons, in statistical classification of gene expression
data, most available classifiers need strong data dimen-
sionality reduction to make the computation complex-
ity affordable by available general purpose computational
platforms (Statnikov et al., 2005; Deegalla and Boström,
2007). This, sometimes, results in reduced accuracy of the
classification model due to the loss of relevant information.

Recently, a new classification algorithm for gene expression
profiles able to work with high dimensionality data has
been proposed in (Benso et al., 2008, 2010). The algo-
rithm represents gene expression profiles by means of Gene
Expression Graphs (GEG) and performs the classification
by comparing graphs representing different phenotypes.
While it partially overcomes the problems of other sta-
tistical classifiers when managing high dimensional data,
its high computation time still represent a major problem
for its widespread adoption.

This paper investigates the use of off-the-shelf Graphic
Processor Units (GPUs) to accelerate the GEG-based
classification algorithm proposed in (Benso et al., 2008,
2010). The availability of such an accelerated classifier has
the potentiality of avoiding data dimensionality reduction
during gene expression profiles analysis while keeping
the computation time under control. This minimizes the
probability of discarding information potentially useful for
the analysis, allowing to obtain maximum accuracy from
the classification model.

2. PARALLEL COMPUTING AND GPU

Parallel computing is a very attractive solution to speed
up advanced bioinformatics tools. It allows many calcula-

Control Engineering and Applied Informatics 35

tions to be carried out simultaneously by dividing large
problems into smaller ones solved concurrently. According
to the level at which the hardware supports parallelism,
parallel computers can be roughly classified into: (i) multi-
core and multi-processor computers having multiple pro-
cessing elements within a single machine; (ii) distributed
computers including clusters, Massive Parallel Processing
(MPP) computers and grid computers using multiple ma-
chines connected through a network; (iii) specialized par-
allel computers including reconfigurable computing plat-
forms based on FPGAs and GPUs (Bader and Pennington,
2001; Fan et al., 2004). Each of these classes involves dif-
ferent costs. Figure 1 gives a general summary of how the
cost of a gigaflop decreased in the last 10 years depending
on different architectures.

$0

$140.00

$280.00

$420.00

$560.00

$700.00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

KLAT2, Kentucky Linux Athlon Testbed 2,
is a 64+2 700MHz Athlon cluster

KASY0
(Kenntucky
ASYmmetric Zero)
The first sub-US$100/
GFLOPS computing
technology

Ambric AM2045: Ambric-
architecture is a massively
parallel distributed memory
multiprocessor

ATI Radeon
R800: The first
high-
performance 40
nm GPU from
ATI

Fig. 1. Economic trend of GFLOP cost in the last 10 years.

The use of GPUs for parallel processing is a recent
paradigm that turns the massive floating-point compu-
tational power of a modern graphics accelerator into
a general-purpose computing platform. Today, parallel
GPUs have begun making computational inroads against
general-purpose CPUs, and a subfield of research, dubbed
GPGPU for General Purpose Computing on GPU, has
found its way into diverse fields (Nickolls et al., 2008;
Luebke, 2008; Coutinho et al., 2009; Wei-dong and Zong-
min, 2009). Beyond their appeal as cost-effective high-
performance computing accelerators, GPUs also signifi-
cantly reduce space, power, and cooling demands com-
pared to other parallel platforms. For instance, compared
to the latest quad-core CPUs, NVIDIA Tesla C2050TMand
C2070TMprocessors deliver equivalent computing perfor-
mances at 1/10th the cost and 1/20th the power consump-
tion. GPUs are therefore one of the most viable solutions to
deliver low-cost and easily available parallel computation
to bioinformatics applications (Manavski and Valle, 2008).

2.1 The CUDA programming model

CUDA (Compute Unified Device Architecture) is an ex-
tension of the C programming language for massive
parallel high-performance computing on the NVIDIA’s
GPUs (NVIDIA, 2010a). It includes C/C++ software-
development tools, function libraries and a hardware-
abstraction mechanism that hides the GPU hardware from
developers thus overcoming the complexity of previous
GPGPU approaches. The real breakthrough is that CUDA
can be used on several off-the-shelf NVIDIA video cards

installed in most personal computers already available to
researchers as well as private and public scientific institu-
tions.

In CUDA, the GPU is viewed as a compute device suitable
for parallel data applications. It has its own random access
memory and may be used to run kernels, i.e., functions
directly called from the CPU of the computer hosting the
GPU. One kernel at a time can be parallelized on the GPU
by splitting it into threads. Threads are grouped into blocks
and many blocks may run in a grid of blocks. The GPU
contains a collection of multiprocessors (MPs) each one
responsible for handling one or more blocks of a grid. A
block is never divided across multiple MPs. Each MP is
further divided into a number of stream processors (SPs)
each one handling one or more threads of a block. Threads
of the same block share data through fast shared on-chip
memory and can be synchronized through synchronization
points.

An important feature of CUDA is that programmers do
not write threaded code explicitly. A hardware thread
manager handles parallelism automatically, a vital prop-
erty when multithreading scales to thousands of threads.
Although CUDA automates threads management, it does
not entirely relieve developers from thinking about threads.
Developers must analyze their algorithms to determine the
best way to divide data into smaller chunks for distribution
among the thread processors and for optimal use of the
available memory. This data layout or “decomposition”
does require programmers to find the optimal numbers of
threads and blocks that will keep the GPU fully utilized.

Downsides are few. Mainly, GPUs only recently became
fully programmable devices, so their programming inter-
faces and tools are somewhat immature. Moreover, single-
precision floating point is sufficient for consumer graphics,
so GPUs do not yet support double precision.

3. GEG-BASED CLASSIFIER

The GEG-based classifier proposed in (Benso et al., 2008,
2010) performs classification by representing gene expres-
sion profiles as Gene Expression Graphs (GEG). GEGs are
constructed from raw gene expression measures obtained
from the scanning and preprocessing process of microarray
experiments (Gibson, 2003; Allison et al., 2006). GEGs
model groups of gene expression profiles with common
characteristics (e.g., same disease) in a single structure.
The model is constructed in order to allow efficient clas-
sification, to avoid the influence of pre-processing steps
on the prediction process, and to work with minimum
dimensionality reduction on the raw data.

In particular, a set S of samples obtained from different
microarray experiments can be modeled by a non-oriented
weighted graph GEG = (V,E) where:

• each vertex vx ∈ V represents a gene. Only vertices
representing relevant genes are included in the graph;
• each edge (u, v) ∈ E ⊆ V × V connects pairs

of vertices representing genes that are co-relevant,
i.e., concurrently relevant, within a single sample. It
therefore models relationships among relevant genes
of a sample. If n genes are co-relevant in the same
sample, each corresponding vertex will be connected

36 Control Engineering and Applied Informatics

with an edge to the remaining n−1 ones, thus creating
a clique;
• The weight wu,v of each edge (u, v) ∈ E corresponds
to the number of times genes u and v are co-relevant
in the same sample over the set of samples. In a
graph built over a single experiment, each edge will
be weighted as 1. Adding additional microarrays will
modify the graph by introducing additional edges
and/or by modifying the weight of existing ones.

A Cumulative Relevance Count (CRC) can be computed
for each node v (gene) of the graph to reflect its expression
trend across the experiments as follows:

CRCv =
∑
∀s∈S

Relv (s) (1)

where Relv(s) is +1 if v is over-expressed in s, -1 if v is
silenced in s, and 0 if v is not relevant in s. A gene is
considered relevant iff its CRC is not zero.

GEGs are an excellent data structure for building efficient
classifiers. The classifier works by structurally compar-
ing pairs of GEGs: one representing a given pathology
(GEGpat), built from a corresponding set of training sam-
ples Trpat, and one representing the sample s to classify
(GEGs). This comparison measures how much GEGs is
similar (or can be overlapped) to GEGpat in terms of over-
expressed/silenced genes (CRC of vertices), and relation-
ships among gene expressions (weight of edges). The result
of this operation is a proximity score (Ps ∈ [−1, 1] ⊂ R),
computed according to eq. 2, measuring the similarity
between the two graphs.

Ps(GEGpat, GEGs) =
SMS(GEGpat, GEGs)

MMS(GEGpat)
(2)

SMS (sample matching score) analyzes the similarity of
GEGpat and GEGs considering only those vertices (genes)
appearing in both graphs:

SMS (GEGpat, GEGs) =

=
∑

∀(i,j)∈Es∩Epat

[(
wi,j ·

Zi · |Zi|
|Zi|+ |Zj |

)
+

+

(
wi,j ·

Zj · |Zj |
|Zi|+ |Zj |

)]
(3)

where (i, j) are edges appearing in both GEGs and
GEGpat, while Zx is the z-term of vertex vx computed
as:

Zx = CRCxpat · CRCxs (4)

By construction, each vertex vx of a GEG has CRCx < 0
if gx is silenced in the majority of the samples of its training
set, CRCx = 0 if gx is actually not relevant in its training
set, or CRCx > 0 if gx is over-expressed in the majority of
the samples of its training set. The z-term may therefore
assume the following values:

• Zx > 0: if gx is silenced/over-expressed in both GEGs

and GEGpat;
• Zx < 0: if gx is silenced in GEGs and over-expressed
in GEGpat, or vice versa;
• Zx = 0: if gx is not relevant either in GEGs, or in

GEGpat.

MMS (maximum matching score) is the maximum SMS
that would be obtained with all genes in GEGs perfectly
matching all genes in GEGpat, with the z-term of each
gene always positive.

MMS (GEGpat) =

=
∑

∀(i,j)εEpat

(
wi,j ·

CRC2
i + CRC2

j

|CRCi|+ |CRCj |

)
(5)

In a classification experiment the GEG representing a
given sample is compared to different GEGs each corre-
sponding to one of the phenotypes included in the classi-
fication library. The comparison returning the maximum
proximity score can be used to identify the phenotype of
the sample.

3.1 Classifier implementation

Since the GEG-based classifier compares each pathology
(represented by a GEGpat) with each sample to classify,
the memory required for each comparison has to be enough
to store two GEGs, each one composed of several thou-
sands of vertices (genes). In order to reduce the required
amount of memory GEGs are never explicitly represented
with an adjacency matrix or list. Instead, we use a ma-
trix with rows associated to experiments used to build
the GEG and columns associated to genes. Each element
contains the relevance of the gene in the considered exper-
iment. Therefore the actual software representation of a
GEG is a matrix of experiments and their gene relevance
values named here GEGMatrix.

Alg. 1 shows the MMS computation algorithm. For each
row of the GEGMatrix (lines 3-13) the MMS contribution
of each gene is computed (line 4) w.r.t. the set of the
remaining genes (lines 5-11).

Algorithm 1 MMS computation algorithm
1: MMS (n_rows, n_genes, GEGMatrix, CRCPat)
2: mms = 0
3: for r=0 to n_rows-1 do
4: for i=0 to n_genes-2 do
5: for j=i+1 to n_genes - 1 do
6: if (GEGMatrix[r][i]*GEGMatrix[r][j]) != 0 then
7: num = pow(CRCPat[i],2) + pow(CRCPat[j],2)
8: den = abs(CRCPat[i]) + abs(CRCPat[j])
9: mms += num/den
10: end if
11: end for
12: end for
13: end for
14: return mms

In a similar way the SMS is computed according to Alg.
2. The matrix exploration remains the same, and the
CRCSample and CRCPat vectors storing the cumulative
relevance counts of both GEGpat and GEGs are used to
compute each SMS contribution according to eq. 3.

Both Alg. 1 and Alg. 2 perfectly match two critical
requirements for an efficient implementation with CUDA:
first, they deal with massive floating point operations,
and second they perform repetitive arithmetical operations
among identically structured data.

Control Engineering and Applied Informatics 37

Algorithm 2 SMS computation algorithm
1: SMS (n_rows, n_genes, GEGMatrix, CRCPat, CRCSample)
2: sms = 0
3: for i=0 to n_genes-2 do
4: if CRCSample[i] != 0 then
5: Zi = CRCPat[i]*CRCSample[i]
6: for j=i+1 to n_genes - 1 do
7: if CRCSample[j] != 0 then
8: Zj = CRCPat[j]*CRCSample[j]
9: num = (Zi * abs(Zi)) + (Zj * abs(Zj))
10: den = abs(Zi) + abs(Zj)
11: for r= 0 to n_rows -1 do
12: if (GEGMatrix[r][i]*GEGMatrix[r][j]) == 1 then
13: sms += num/den
14: end if
15: end for
16: end if
17: end for
18: end if
19: end for
20: return sms

4. GEG-BASED CLASSIFIER IMPLEMENTATION
WITH CUDA

This section describes how the implementation of the
GEG-based classifier proposed in section 3.1 can be ac-
celerated using CUDA. To obtain a significant increment
of the computation performances the best practice is to
try to parallelize as much as possible time consuming loop
iterations. Fortunately both Alg. 1 and Alg. 2 include
iterations that work on sub-portions of the GEGMatrix.
They can be therefore easily parallelized. Each parallelized
iteration has to be designed to work on a memory portion
of GEGMatrix independent from the ones of the other
iterations. In this way the elaboration can be done in
parallel without affecting the correctness of the final result.

Looking at Alg. 1 it is clear that the final result is
composed of different contributions: one for each row of
GEGMatrix, and for each row one contribution for each
gene. Alg. 3 proposes a parallel implementation of Alg. 1.
The proposed implementation is based on two kernels.

The elaboration is performed iterating on each row (line
4). Kernel-1 (called at line 8) is in charge of copying one
row of GEGMatrix into a reserved area into the the GPU
memory (gpu_row). This is part of the CUDA initial-
ization process. It allows to pass the whole classification
effort from the main system’s CPU to the GPU. The
notation <<< dimBlock, dimGrid >>> indicates that
this kernel is parallelized by considering a grid of dimGrid
blocks with each block composed of dimBlock threads. In
this case the copy of the different elements of the row
is performed in parallel to speed up the process. Each
generated thread executes the function cudaMMS_k1 in
parallel (lines 18-20). Each thread is identified by a block
identifier (blockIdx) and by a thread identifier (threa-
dIdx) used to compute the element to be copied (line
19). The cudaThreadSynchronize function (line 9) allows
to synchronize the different threads in order to wait the
end of the copy before moving to the next step of the
computation. The calculation of the MMS is computed
again in parallel through the kernel cudaMMS_k2 (lines
22-30). Each instance of this kernel (thread) analyzes the
gene idx of the row and compares it to all following genes in

the row according to the original algorithm Alg. 1 (lines 24-
29). All calculations are performed on the copy of the row
stored in the GPU’s memory, thus allowing fast access to
this information. When all threads computing the partial
contributions of the MMS are completed (line 11), the
single contributions are transferred from the GPU memory
to the CPU memory (line 12) and the contribution of the
row to the MMS is reconstructed by adding the single
contributions (lines 13-15).

Algorithm 3 CUDA MMS algorithm
1: MMS (n_rows, n_genes, GEGMatrix, CRCPat)
2: mms = 0
3: define dimBlock, dimGrid according to CUDA architecture
4: for r=0 to n_rows-1 do
5: cpumalloc (cpu_mms[n_genes])
6: cudamalloc (gpu_mms[n_genes])
7: cudamalloc (gpu_row[n_genes])
8: cudaMMS_k1 <<< dimBlock, dimGrid >>> (r, n_genes,

GEGMatrix, gpu_row)
9: cudaThreadSynchronize
10: cudaMMS_k2 <<< dimBlock, dimGrid >>>(n_genes, CR-

CPat, gpu_row, gpu_mms)
11: cudaThreadSynchronize
12: cudamemcopy (cpu_mms,gpu_mms)
13: for i=0 to n_genes-1 do
14: mms+=cpu_mms[i]
15: end for
16: end for
17: ===== Kernel-1 (threaded)
18: cudaMMS_k1 (row, n_genes, GEGMatrix, gpu_row)
19: idx = blockIdx * dimBlock + threadIdx;
20: gpu_row[idx] <= GEGMatrix[row*n_genes+idx]
21: ===== Kernel-2 (threaded)
22: cudaMMS_k2 (n_genes, CRCVect, gpu_row, gpu_mms)
23: idx = blockIdx * dimBlock + threadIdx;
24: for j=idx+1 to n_genes - 1 do
25: if (gpu_row[idx] * gpu_row[j]) != 0 then
26: num = pow(CRCVect[idx],2) + pow(CRCVect[j],2)
27: den = abs(CRCVect[idx]) + abs(CRCVect[j])
28: gpu_mms[idx] += num/den
29: end if
30: end for

Figure 2 graphically shows how threads are generated
during the execution of Alg. 3.

The computation of the SMS works in a slightly different
way since it is performed in two steps: the first one
calculates the weigh of each edge of GEGpat connecting
expressed genes (Alg. 4), while the second computes the
final SMS (Alg. 5). In Alg. 4, as in the previous one,
all required memory structures are allocated, in both the
GPU (lines 4, 5) and the main system’s CPU (line 6).
Being the GEG an undirected simple weighted graph with
no self-loops, its adjacency matrix is symmetric and its
diagonal is a zero-set. Consequently, the only useful part
of the matrix is its strictly upper subset that in the
code has been implemented as an array (lines 3, 4). This
solution saves a considerable amount of memory which
is a key requirement in GPU programming but involves
a more complex indexing. The getAdjacencyArrayIndex
function (line 24) performs the index calculation according
to the array representation. Kernel-1 (called at line 8)
is demanded to copy each selected row to the proper
GPU memory structure. Kernel-2 (called at line 10),
performs the weight computation for all pairs of genes

38 Control Engineering and Applied Informatics

Kernel-1

cpu memory

G2 G3 Gi ... GPG1

row X

GEGMatrix
...

cpu memory

G2 G3 Gi ... GPG1

row X

GEGMatrix
...

cuda memory

G2 G3 Gi ... G
PG1

gpu_row
...

row X

cuda memory

G2 G3 Gi ... G
PG1

gpu_row
...

row X

main system memory

G2 G3 Gi ... GPG1

row X

GEGMatrix
...

gpu memory

G2 G3 Gi ... GPG1
v1 v2 v3 vi ... vP

gpu_row
...
...row X

main system memory

G2 G3 Gi ... GPG1

row 1

...

row N

GEGMatrix
...

Kernel-2

gpu memory

...row X

...
vP

GP

Th. 1

v1

G1

vP

...

...

...

v2

Th. T

vT

GT

vP

...

...

vT+1

vT+1

GT+1

v2T

G2T

...

...

cuda T-threads

cuda Block 1 cuda Block 2

...

...

Th. k

vk

Gk

vP

...

vk+1

Thread k:
 for x in k+1 ... P
 { F(k,x) }

...

...

Fig. 2. CUDA GPU Workflow.

in the row. The two kernels are synchronized by the
cudaThreadSynchronize function previously detailed. At
completion of all generated threads, the GPU weight
memory structure is copied back into the host memory
(line 13). Alg. 5 computes a similar set of operations as the
one of Alg. 1, with the difference that the sample under
test is taken into account by Kernel-1 and Kernel-2 (lines
9 and 11). It causes that the gene contribution is evaluated
only if it is present in the sample under test (line 25).

In order to fit the requirements of each specific prob-
lem, algorithms have to properly manage the GPU blocks
and grids definition. In the proposed implementation,
the algorithm uses the following definitions: dimBlock =
#Threads, dimGrid = (n_genes/dimBlock) + 1. This
solution allows to balance the computational effort de-
pending on the number of genes. In the proposed imple-
mentation, best results are obtained setting to 64, 64 and
470, the number of Threads, the dimBlock and dimGrid
values respectively, giving an average of 30K genes.

5. RESULTS

This section presents the results of a set of experiments
run to demonstrate the effectiveness of the proposed ap-
proach. Results show the improvement in the computa-
tion of the different components of the Proximity Score
introduce in eq. 2: MMS, SMS (including the computation
of the different weights wij). All tests have been per-
formed on a NVIDIA Quadro FX 1700 video card (512MB
Memory Interface, 128-bit Graphic Memory Bandwidth,
12.8 GB/sec. Graphics Bus, 32 CUDA Parallel Processor
Cores) NVIDIA (2010b). The training sets used to build
the different GEGs and to train the classifier come from

Algorithm 4 CUDA vector of weights computation algo-
rithm
1: WijFunct (n_rows, n_genes, GEGMatrix)
2: define dimBlock, dimGrid according to CUDA architecture
3: adjacency_matrix_dim = (n_genes * (n_genes - 1)) / 2
4: cudamalloc (gpu_wij[adjacency_matrix_dim])
5: cudamalloc (gpu_row[n_genes])
6: cpumalloc (cpu_wij[adjacency_matrix_dim])
7: for r=0 to n_rows-1 do
8: cudaWij_k1 <<< dimBlock, dimGrid >>> (r, n_genes,

GEGMatrix, gpu_row);
9: cudaThreadSynchronize();
10: cudaWij_k2 <<< dimBlock, dimGrid >>> (gpu_row,

n_genes, gpu_wij);
11: cudaThreadSynchronize();
12: end for
13: cudamemcopy (cpu_wij, gpu_wij)
14: return cpu_wij
15: ===== Kernel-1 (threaded)
16: cudaWij_k1 (row, n_genes, GEGMatrix, gpu_row)
17: idx = blockIdx * dimBlock + threadIdx;
18: gpu_row[idx] <= GEGMatrix[row*n_genes+idx]
19: ===== Kernel-2 (threaded)
20: cudaWij_k2 (gpu_row, n_genes, gpu_wij)
21: idx = blockIdx * dimBlock + threadIdx;
22: for j=idx+1 to n_genes - 1 do
23: if ((abs(gpu_row[idx]) == 1) AND (abs(gpu_row[j]]) == 1))

then
24: adj_index = getAdjacentArrayIndex(idx, j)
25: gpu_wij[adj_index] ++
26: end if
27: end for

experiments run on microarray chips of different sizes: 9K
(9216 spots), 18K (18432 spots), 24K (24168 spots), 37K,
and 45K (43196 spots) (Stanford, 2010). The data set used
to test the parallelized classification is instead composed
of two different subsets of microarray experiments. One
subset of samples belongs to the set of diseases included
in the classification library and forms a set of classifiable
samples (In-class or INC samples). The second subset is
a test set of unclassifiable samples (out-of-class or OOC
samples), i.e., samples that do not belong to any of the
class in the classification library. These samples are used
to better analyze the classification when samples need to
be rejected. Table 1 summarizes the results for the par-
allelization of the MMS computation algorithm. To study
the trade-off and the sensitivity to the parallel algorithm
parametrization, all experiments have been repeated with
different number of threads. The first important result is
that an average 50% improvement can be obtained in the
computation of the MMS for all training GEGs, and this
improvement is independent of their size. A second im-
portant consideration is that an increase of the number of
threads does not always correspond to an increase in per-
formances. In all the experiments, any number of threads
greater than 30 resulted in very similar performance im-
provements, again regardless of the GEGs size. Only when
the number of threads falls below 30, the performances
decrease because not all MPs are completely assigned. In
the extreme situation of 2 to 8 threads, performances are
in most cases even worse than the original serial version of
the algorithm. This result is interesting because it suggests
that, even if the CUDA architecture usually requires a fine
tuning of both thread and block parameters in order to
reach its maximum parallelism, in the case of the parallel

Control Engineering and Applied Informatics 39

Algorithm 5 CUDA SMS algorithm
1: SMS (n_rows, n_genes, CRCSample, CRCPat)
2: sms = 0
3: define dimBlock, dimGrid according to CUDA architecture
4: for r=0 to n_rows-1 do
5: cpumalloc (cpu_sms[n_genes])
6: cudamalloc (gpu_sms[n_genes])
7: cudamalloc (gpu_row[n_genes])
8: cudaSMS_k1 <<< dimBlock, dimGrid >>> (r, n_genes,

CRCSample, gpu_row)
9: cudaThreadSynchronize
10: cudaSMS_k2 <<< dimBlock, dimGrid >>> (n_genes, CR-

CPat, gpu_row, gpu_wij, gpu_sms)
11: cudaThreadSynchronize
12: cudamemcopy (cpu_sms,gpu_sms)
13: for i=0 to n_genes-1 do
14: sms+=cpu_sms[i]
15: end for
16: end for
17: ===== Kernel-1 (threaded)
18: cudaSMS_k1 (row, n_genes, CRCSample, gpu_row)
19: idx = blockIdx * dimBlock + threadIdx;
20: gpu_row[idx] <= CRCSample[row*n_genes+idx]
21: ===== Kernel-2 (threaded)
22: cudaSMS_k2 (n_genes, CRCPat, gpu_row, gpu_wij,

gpu_sms)
23: idx = blockIdx * dimBlock + threadIdx;
24: if gpu_row[idx] != 0 then
25: Zi = CRCPat[idx] * gpu_row[idx]
26: for j=idx+1 to n_genes - 1 do
27: if gpu_row[j] != 0 then
28: Zj = CRCPat[j] * gpu_row[j]
29: num = (Zi * abs(Zi)) + (Zj * abs(Zj))
30: den = abs(Zi) + abs(Zj)
31: sms += gpu_wij[j] * num/den
32: end if
33: end for
34: end if

Fig. 3. SMS improvement including the computation of
the different weights

MMS algorithm the maximum possible improvement can
be reached using about 30 threads, regardless the size of
the GEG, making the tuning not necessary.

Figure 3 shows instead the improvement obtained for the
SMS computation including the computation of the differ-
ent weights. The figure is divided in two parts, showing the
improvement when comparing the GEGs representing the

2	 2	
2	

13	 13	 13	

68	 64	 67	

10	 10	 10	

1x	

10x	

100x	

INC	 OOC	 TOT	

MMS	

SMS+Wij	

SMS	

Wij	

Fig. 4. Average improvement for each Algorithm

Fig. 5. Total time improvement (MMS+Wij*SMS)

available classes with the INC samples of the test set (right
side), and the OOC samples (right side), respectively. The
results for the SMS computation are even more promising
than for the MMS, reaching an average improvement be-
tween 5 to 25 times the original computation time. Figure
4 breaks down the contribution to the total improvement
of the three implemented algorithms (MMS, SMS, and
weights). The first important observation is the general
robustness of the implementation against OOC and INC
samples classification. This suggests that all algorithms
have a solid behavior when the comparison is done with
both a wide or small gene intersection between the two
compared GEGs. From the figure it also emerges the huge
acceleration obtained in the weights computation (66x);
unfortunately the contribution of the weights computation
in the total computation time of the SMS is very small
and therefore the improvement in its computation is not
heavily reflected in the overall improvement. It neverthe-
less allows to speed-up the total computation of the SMS
of an average of 13x. The average MMS improvement is
assessed at about 2x.

Figure 5 presents a summary of the overall average im-
provement in the Proximity Score computation for both
INC and OOC samples. The average trend of about 12x
improvement is synthesized by the linear regression fitting
line. The lower bound of the acceleration is also not far
from the average curve, and it guarantees an average im-

40 Control Engineering and Applied Informatics

Number of Threads
GEGs 2 4 8 16 32 64 128 256 512 Original Best Saving
ALL 36 54 36 19 18 17 17 18 18 34 50%
AML na na na 55 50 50 49 49 49 95 48.5%

DLBCL 19 27 18 10 9 9 9 9 9 18 50%
SBT 10 14 10 5 5 4 5 5 5 9 56%
CLL 3 5 4 2 2 2 2 2 2 4 50%

CLLww 9 14 10 5 5 5 4 5 5 9 55.5%
CBCL 49 74 49 26 24 24 24 24 25 47 49%
FL 73 111 73 39 37 36 36 36 36 71 49.5%
HB 95 143 96 51 47 46 47 47 47 102 55%

TOTAL 294 442 446 212 197 193 193 195 196 389 50.5%
* Time expressed in seconds
Table 1. Time Relations

provement of at least 5x, but with very high upper bounds
in all GEGs.

6. CONCLUSION

The parallel processing conversion of the GEG-based clas-
sification algorithm proposed in this paper aims at showing
how the parallel distribution of tasks on GPU’s dedicated
cores heavily improves time performances at very rea-
sonable costs. Due to its data structure, the GEG-based
classification algorithm is a very good example of how low-
cost graphic processors can be used in massive-calculation
algorithms. Apart from the scientific contribution of the
parallel version of the GEG based classifier, the presented
work represents a very interesting result in the definition
of low-cost methodologies and architectures for improving
the performances of complex bioinformatic algorithms,
with the final goal of making them available to different
level of clinical practices and not only to a selected number
of resourceful laboratories.

ACKNOWLEDGEMENTS

The authors wish to acknowledge and thank Alessio Ver-
cellone and Alessandro Morabito, because without their
hard work and help this work could not have been com-
pleted.

REFERENCES

Allison, D.B., Cui, X., Page, G.P., and Sabripour, M.
(2006). Microarray data analysis: from disarray to
consolidation to consensus. Nature Reviews: Genetics,
7(1), 55–65.

Bader, B. and Pennington, R. (2001). Cluster Comput-
ing: Applications. The International Journal of High
Performance Computing, 15(2), 181–185.

Benso, A., Di Carlo, S., and Politano, G. (2010). A cDNA
microarray gene expression data classifier for clinical
diagnostics based on graph theory. ACM/IEEE Trans-
actions on Computational Biology and Bioinformatics.

Benso, A., Di Carlo, S., Politano, G., and Sterpone, L.
(2008). Differential gene expression graphs: A data
structure for classification in DNA microarrays. In 8th
IEEE International Conference on BioInformatics and
BioEngineering (BIBE), 1–6.

Coutinho, B., Teodoro, G., Oliveira, R., Neto, D., and
Ferreira, R. (2009). Profiling General Purpose GPU

Applications. In Computer Architecture and High Per-
formance Computing, 2009. SBAC-PAD ’09. 21st Inter-
national Symposium on, 11–18.

Deegalla, S. and Boström, H. (2007). Classification of
microarrays with kNN: Comparison of dimensionality
reduction methods. In LNCS: Intelligent Data En-
gineering and Automated Learning (IDEAL), volume
4881, 800–809.

Fan, Z., Qiu, F., Kaufman, A., and Yoakum-Stover, S.
(2004). GPU Cluster for High Performance Comput-
ing. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, 47.

Gibson, G. (2003). Microarray analysis. PLoS Biology,
1(1), 28–29.

Larranaga, P., Calvo, B., Santana, R., Bielza, C., Gal-
diano, J., Inza, I., Lozano, J.A., Armananzas, R.,
Santafe, G. ad Perez, A., and Robles, V. (2006). Machine
learning in bioinformatics. Briefings in Bioinformatics,
7(1), 86–112.

Luebke, D. (2008). CUDA: Scalable parallel programming
for high-performance scientific computing. In Biomed-
ical Imaging: From Nano to Macro, 2008. ISBI 2008.
5th IEEE International Symposium on, 836–838.

Manavski, S.A. and Valle, G. (2008). CUDA compatible
GPU cards as efficient hardware accelerators for Smith-
Waterman sequence alignment. BMC bioinformatics, 9
Suppl 2(Suppl 2), S10+.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008).
Scalable Parallel Programming with CUDA. Queue,
6(2), 40–53.

NVIDIA (2010a). CUDA Technical Specifications. URL
http://www.nvidia.com/object/cuda_home.html.

NVIDIA (2010b). Quadro FX - Technical Specifications.
URL http://www.nvidia.com/page/qfx_mr.html.

Stanford, U. (2010). cDNA Stanford’s Microarray
database. URL http://genome-www.stanford.edu/.

Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin,
D., and Levy, S. (2005). A comprehensive evaluation
of multicategory classification methods for microarray
gene expression cancer diagnosis. Bioinformatics, 21(5),
631–643.

Wei-dong, S. and Zong-min, M. (2009). High-Throughput
Sequence Translation Using CUDA. In Biomedical
Engineering and Informatics, 2009. BMEI ’09. 2nd
International Conference on, 1–5.

