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Abstract: This paper deals with two design procedures of a control system for a proportional or integrator 
time-delay plant using a suitable placement of the closed-loop poles to have a small response time, a zero 
or small overshoot and a  given magnitude ratio of the controller output to a step reference or disturbance. 
To obtain these performances, the both controller design procedures provide a unique solution for the 
closed-loop pole placement, such that the open-loop system is of simple integrator type (with one pole in 
origin) to have zero steady-state error to a step input. Three numerical examples for time-delay plants of 
proportional and integrator type are given to illustrate the effectiveness of the proposed control 
procedures. 
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1.  INTRODUCTION 

The design of linear control systems is frequently examined in 
the state space domain and in the input-output domain 
[2,5,7,8], by either classical approach of a state feedback pole 
placement and of a suitable state-estimator, or H2 optimal 
synthesis of a state feedback and of a  Kalman state-estimator. 
In frequency domain, the control system design by H2 or H∞ 
optimal method is, as a rule, parametric, aiming to find the 
best tuning parameters of a given controller structure 
[1,6,9,10]. 
This paper extends the design method of a control linear 
system without time-delay in [4] to the case of the stable 
time-delay plants, starting from the idea that the pole 
placement in the complex plane predominantly determines 
the control system dynamic performances, but the number of 
zeros and their placement in the left half s-plane also 
influence the system performances [3]. 
The design of the controller by a suitable placement of the 
closed-loop system poles is based on three premises: 
a) The plant is stable, non-derivative (without null zeros) and 
with large time-delay ; 
b) The open-loop system is of simple integrator type (with 
one pole in origin) to have zero steady-state error to a step 
input;  
c) The closed-loop control system has a minimum possible 
time-delay (equal to the plant time-delay, as in the Smith 
predictor case) and a suitable pole polynomial to have the 
best control performances for a given magnitude ratio. 
In the first procedure, which provides a finite and monotonic 
control system response to a step input, the last condition c) is 
fulfilled by choosing all of the closed-loop system poles to be 

real, negative and equal. Theoretically, by a suitable choice of 
the pole polynomial, the step response time of the closed-loop 
system can be, except the time-delay, as small as desired. 
However, this is not possible in practice due to the plant 
model uncertainty, which imposes restrictions on the 
magnitude of the controller output to a step reference or 
disturbance. For instant, in the case of a plant of proportional 
type, the pole polynomial must be chosen such that the step 
response lag time of the control system is at most 2...5 times 
less than the step response lag time of the plant. In practical 
applications, the magnitude  coefficient (ratio) of the 
controller output must be bounded to a given value (less than 
20 for a proportional plant and than 10 for an integrator plant) 
to assure a smooth control, to diminish the noise 
amplification, to reduce the wear and tear of the plant, to 
decrease the fuel and energy consumption.   
For a control system with proportional plant and semi-proper 
controller, the magnitude ratio of the control variable c  is 
defined in [4] as the ratio )(/)0( ∞+ cc  between the initial 
value and the final value of this variable to a step reference. 
For a control system with simple integrator plant and semi-
proper controller, the magnitude ratio of the control variable 
c  is defined as the ratio 0/)0( rc +  between the initial value 
of the control variable c  to a step reference and the reference 
value 0r  (under the assumption that these variables are 
expressed in percent). 

2. FIRST DESIGN PROCEDURE  

The main ideas of the design procedure are given by the 
following three theorems. 

Theorem 1. Consider a time-delay plant given by 

mailto:E-mail:vcirtoaje@upg-ploiesti.ro


4                                  CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 
 Ts

P esGsG −= )()( ,                                                           (1) 

where 

0
1

1

0
1

1
)(
)(

)(
pspsp

qsqsq
sp
sqsG

n
n

n
n

k
k

k
k

+++

+++
==

−
−

−
−

L

L
,   

is a stable, non-derivative and minimum-phase rational 
function having the polynomials )(sp  and )(sr  coprime,  

nk < , 0≠np , 0≠kq . 
For any kn −  degree polynomial  
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with all 0>iT , choosing the stable semi-proper controller 
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the open-loop system is of simple integrator type and the 
closed–loop system has the transfer function 
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Proof. First we prove that the controller )(sGC  is semi-
proper and stable. The controller is semi-proper because 
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Since )(sG  is of minimum-phase and non-derivative (that is, 
)(sG  has all its roots in the left half s-plane), the controller is 

stable if the equation 

0)( =− −TsesP  

has all its nonzero roots in the left half s-plane. Let 
0j ≠+= yxs  be a nonzero root of this equation. From 
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Clearly, this equality doesn’t hold for 0≥x , since  
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Therefore, the real part x  of the root 0j ≠+= yxs  is 
negative. Thus, the controller (3) is semi-proper and stable. 

The open-loop (direct) system is of simple integrator type, 
because its transfer function has the expression 
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and hence 
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The closed-loop system has the transfer function 
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Remark 1o. If the plant is of proportional type, that is  
00 ≠p  and 00 ≠q , then the controller is simple integrator, 

since 
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If the plant is of simple integrator type, that is 00 =p , 01 ≠p  
and 00 ≠q , then the controller is of proportional type, since 
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Remark 2o. Let )(1 sG  be the transfer function from 
reference r  to controller output c . Since 
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does not depend on the time-delay T , it follows that the 
control system response )(tc  to a unit step reference does not 
depend on T , too; that means that  )(tc  is the same as in the 
case of a plant without time-delay. 

Remark 3o. To implement the controller (3) one can use the 
block-scheme in Figure 1, where 
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Fig. 1. The controller implementation scheme. 

Theorem 2. Consider the plant )(sGP  in Theorem 1 of 
proportional type )0,0( 00 ≠≠ qp . For a given magnitude 
ratio M , the step response time of the control system has the 
smallest value by choosing 
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Proof. For a stable control system with proportional plant, 
the magnitude ratio is the ratio between the initial value and 
the final value of the controller output c  to a unit step 
reference [4] 
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Let )(1 sG  be the transfer function from reference to 
controller output. Since 
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using the initial and final value theorems, we get 
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For a given magnitude ratio M , from the arithmetic mean-
geometric mean inequality 
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it follows that the sum knTTT −+++ L21  attains its minimal 
value when 
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On the other hand, since 
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 is the best first order approximation of )(sP  by Padé 
approximation, we can approximate the closed-loop transfer 
function (4) by 
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Therefore, the closed-loop response time to a step reference 
has the smallest value if the equivalent time constant  

knTTT −+++ L21  

is minimal; that is, when (9) holds. 

Theorem 3. Consider the plant )(sGP  in Theorem 1 of 
simple integrator type )0,0,0( 010 ≠≠= qpp . For a given 
magnitude ratio M , the step response time of the control 
system has the smallest value by choosing 
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Proof. For a stable control system with simple integrator 
plant, the magnitude ratio is equal to the initial value of the 
controller output c  to a unit step reference  

)0( += cM . 

In practice, the magnitude ratio M  must be bounded to a 
value less than 10 
As shown in the proof of Theorem 2, we have 
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Therefore, for the same reasons as in the proof of Theorem 2, 
choosing 

 kn
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n
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p
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provides the smallest closed-loop response time to a step 
reference.  
To illustrate this proposed design procedure we present two 
applications for a proportional and integrator plant, 
respectively.  

Example 1. Let us consider the proportional plant  
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For 1=M , from (9), (2), (7) and (8) we get 

6321 === TTT ,    3)16()( += ssP , 



6                                  CONTROL ENGINEERING AND APPLIED INFORMATICS 
 
 

2

2

1
)16)(12(2

)18()13(
)(

++

++
=

ss

sssC , 

3

10

02
)16(

)()(
+

==
−

s
esGsC

s
. 

Similarly, for 8=M , we get   
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In Figures 2 and 3 are shown the unit step response )(tyP of 
the proportional plant and the unit step responses )(tc  and 

)(ty  of the closed-loop system for 1=M  and 8=M , 
respectively ( c - control variable, y - controlled variable). 

 
Fig. 2. Unit step responses of the plant ( Py ) and closed-loop 
system ( c and y ) for 1=M . 
 

   
Fig. 3. Unit step responses of the plant ( Py ) and closed-loop 
system ( c and y ) for 8=M . 

The robustness of the control algorithm in the presence of 
uncertainty concerning the estimated value of the plant time-
delay is illustrated in Figure 4 and 5, where three values of 
the time-delay in the controller block (8) are considered: 

8=T  (response 1y ), 10=T  (response y ) and 12=T  
(response 2y ). One can see that the control system designed 

for a larger value of the magnitude ratio M  is a little less 
robust with respect to the estimated plant time-delay. 

 
Fig. 4. Unit step responses of the closed-loop system for 

1=M  and three different values of the time-delay in the 
controller block (8). 
 

 
Fig. 5. Unit step responses of the closed-loop system for 

8=M  and three different values of the time-delay in the 
controller block (8). 
 
Example 2. Let us consider the integrator plant with the 
transfer function 
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For 1=M , from (11), (2), (7) and (8) we get 
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For 8=M , we get 
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In Figures 6 and 7 are shown the unit step response )(tyP of 
the integrator plant and the unit step responses )(tc  and )(ty  
of the closed-loop system for 1=M  and 8=M .  
   

 
Fig. 6. Unit step responses of the closed-loop system with 
integrator plant for 1=M . 

   
Fig. 7. Unit step responses of the closed-loop system with 
integrator plant for 8=M . 

3. SECOND DESIGN PROCEDURE  

Theorem 4. Consider a time-delay plant given by 

Ts
P esGsG −= )()( ,                                            (13) 

where 

0
1

1

0
1

1
)(
)(

)(
psqsp

qsqsq
sp
sqsG

n
n

n
n

k
k

k
k

+++

+++
==

−
−

−
−

L

L
,   

is a stable, non-derivative and minimum-phase rational 
function having the polynomials )(sp  and )(sr  coprime,  

nk < , 0≠np , 0≠kq . 
For any 1+− kn  degree polynomial  
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])1()()[(
1)(

TsC
eAsssG

AssG
−+−

+
=

P
,                        (15) 

where 121 +−+++= knTTTA L , the open-loop system is of 
simple integrator type and the closed–loop system has the 
transfer function 
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Proof. The controller is semi-proper because 
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The open-loop system is of simple integrator type, because 
from its transfer function  
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The closed-loop system has the transfer function 
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Remark 4o. In the case of a proportional plant, the controller 
is of simple integrator type, since 
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It is easy to check that the controller becomes of double 
integrator type if the plant time-delay is zero. 

If the plant is of simple integrator type, that is 00 =p , 
01 ≠p  and 00 ≠q , then the controller is of proportional 

type, since 
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For an integrator plant without time-delay, the controller 
becomes of simple integrator type. 

Remark 5o. To implement the controller (15) one can use the 
block-scheme in Figure 1, where 
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Remark 6o.  We can write the closed-loop system transfer 
function (16) in the form 
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The step response of the closed-loop system is non-
monotonic, but the overshoot and the response lag time are 
small if we chose a dominant time constant significantly 
larger than the other time constants [3]. Choosing 
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where 1/ 21 >= TTj . In this case, the step response overshoot 
)( jkn−σ  is a strictly decreasing function satisfying 
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For a control system with proportional plant and semi-proper 
controller, the magnitude ratio of the control variable c   is 
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Thus, the controller design procedure is as follows:  

- determine 21 /TTj =  to have an overshoot less than or equal 
to the imposed one; 
- determine 2T  from (23) to have the imposed value of the 
magnitude ratio M ; 

- determine 21 jTT = , knsTsTs −++= )1)(1()( 21P  and then 
)(sGC  with (18) and (19), where 21 )( TknTA −+= . 

Remark 7o. Using the proposed procedures one can design a 
two degree of freedom controller in order to have a large 
magnitude ratio related to a step disturbance additive to the 
controlled variable and a smaller magnitude ratio related to a 
step reference. To do this, we can use a suitable first-order 
filter for the reference signal. 

Example 3. For the proportional plant  
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we propose to design a controller such that 5.5≤σ % and 
7/60=M , where σ  is the overshoot of the closed-loop 

system, and M  is the magnitude ratio of the control variable 
to a step reference. 
By (24), we have 
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Since 46.5=σ % for 28=j , using this value of j , from 
(25) we get 22 =T . Then, 
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In Figure 8 are shown the closed-loop responses )(tc  and 
)(ty  to a unit step reference.  

        
Fig. 8. Unit step responses of the closed-loop system with 
proportional plant ( 46.5=σ %, 7/60=M ). 

4. CONCLUSIONS 

Two procedures concerning the controller design for a time-
delay control system have been proposed. 
In accordance to Theorem 1, the designed open-loop system 
is of simple integrator type, the controller is semi-proper and 
stable, and the closed-loop system is of monotonic type and 
has a time-delay equal to the one of the plant, no zeros and 
negative equal poles. The poles are chosen to have a small 
response time and a given magnitude ratio to step reference.  
By the second design procedure, the designed open-loop 
system is also of simple integrator type, the controller is semi-
proper, and the closed-loop system has a time-delay equal to 
the one of the plant, one negative zero and negative poles 
from which one is dominant and the other are equal. 

The presented numerical examples for proportional and 
integrator plants show the effectiveness of the proposed 
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control procedures. As a rule, the control system designed for 
a larger value of the magnitude ratio has a smaller step 
response time, but is a little less robust with respect to the 
estimated plant time-delay. 
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