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Abstract: This paper deals with two design procedures of a control system for a proportional or integrator
time-delay plant using a suitable placement of the closed-loop poles to have a small response time, a zero
or small overshoot and a given magnitude ratio of the controller output to a step reference or disturbance.
To obtain these performances, the both controller design procedures provide a unique solution for the
closed-loop pole placement, such that the open-loop system is of simple integrator type (with one polein
origin) to have zero steady-state error to a step input. Three numerical examples for time-delay plants of
proportional and integrator type are given to illustrate the effectiveness of the proposed control

procedures.
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1. INTRODUCTION

The design of linear control systemsis frequently examined in
the state space domain and in the input-output domain
[2,5,7,8], by either classical approach of a state feedback pole
placement and of a suitable state-estimator, or H, optimal
synthesis of a state feedback and of a Kalman state-estimator.
In frequency domain, the control system design by H, or Hy
optimal method is, as a rule, parametric, aiming to find the
best tuning parameters of a given controller structure
[1,6,9,10].

This paper extends the design method of a control linear
system without time-delay in [4] to the case of the stable
time-delay plants, starting from the idea that the pole
placement in the complex plane predominantly determines
the control system dynamic performances, but the number of
zeros and their placement in the left half splane also
influence the system performances[3].

The design of the controller by a suitable placement of the
closed-loop system polesis based on three premises:

a) The plant is stable, non-derivative (without null zeros) and
with large time-delay ;

b) The open-loop system is of simple integrator type (with
one pole in origin) to have zero steady-state error to a step
input;

¢) The closed-loop control system has a minimum possible
time-delay (equal to the plant time-delay, as in the Smith
predictor case) and a suitable pole polynomia to have the
best control performances for a given magnitude ratio.

In the first procedure, which provides a finite and monotonic
control system response to a step input, the last condition c) is
fulfilled by choosing all of the closed-loop system poles to be

real, negative and equal. Theoretically, by a suitable choice of
the pole polynomial, the step response time of the closed-loop
system can be, except the time-delay, as small as desired.
However, this is not possible in practice due to the plant
model uncertainty, which imposes restrictions on the
magnitude of the controller output to a step reference or
disturbance. For instant, in the case of a plant of proportional
type, the pole polynomia must be chosen such that the step
response lag time of the control system is at most 2...5 times
less than the step response lag time of the plant. In practical
applications, the magnitude  coefficient (ratio) of the
controller output must be bounded to a given value (less than
20 for aproportional plant and than 10 for an integrator plant)
to assure a smooth control, to diminish the noise
amplification, to reduce the wear and tear of the plant, to
decrease the fuel and energy consumption.

For a control system with proportional plant and semi-proper
controller, the magnitude ratio of the control variable c is
defined in [4] as the ratio c(0+)/c(¥) between the initia
value and the final value of this variable to a step reference.
For a control system with simple integrator plant and semi-
proper controller, the magnitude ratio of the control variable
C is defined as the ratio c(0+)/ry between the initial value

of the control variable ¢ to a step reference and the reference
value rg (under the assumption that these variables are

expressed in percent).
2. FIRST DESIGN PROCEDURE

The main ideas of the design procedure are given by the
following three theorems.

Theorem 1. Consider a time-delay plant given by
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Gp(s) =G(s)e” '°, 1 i
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K 1 and hence
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is a stable, non-derivative and minimum-phase rational
function having the polynomials p(s) and r(s) coprime,
k<n, p,t 0, qgt0.

For any n- k degree polynomial

P (s) = (Tys+D(Tos+ )L (T xS+ @)

with all T; >0, choosing the stable semi-proper controller

1
G = , 3
O eoP e e ™ X

the open-loop system is of simple integrator type and the

closed—oop system has the transfer function

Go(s) = ¢ " 4
TP

Proof. First we prove that the controller Gg(s) is semi-

proper and stable. The controller is semi-proper because

lim G (9) = lim R 10
® ¥ s®¥ G(P(s) pnTuTo LT,k

Since G(s) isof minimum-phase and non-derivative (that is,
G(s) hasall itsrootsin the left half s-plane), the controller is
stableif the equation

P(s)-e =0

has al its nonzero roots in the left half s-plane. Let
s=x+jy! 0 beanonzero root of this equation. From

P (x+jy):e‘T(X+iY),

we get

Nk
O[(—I—I X+1)2 +-|—I2y2] =g 2TX
i=1

Clearly, this equality doesn’t hold for x3 0, since

(Tix+1)2 +Ti2y2 >1

for al indices i , and hence

Nk

OIlMx+D? +T2y?]>13 & 2.

i=1

Therefore, the real part x of the root s=x+jy! 0 is
negative. Thus, the controller (3) is semi-proper and stable.

The open-loop (direct) system is of simple integrator type,
because its transfer function has the expression

The closed-loop system has the transfer function

Gd e Ts

“=1re, Py

Remark 1° If the plant is of proportional type, that is
pg! 0 and ggt O, then the controller is simple integrator,

since
Po 10
(Ty+T2 +L+Th )0
If the plant is of simple integrator type, that is pp =0, p;t 0
and gg * 0, then the controller is of proportional type, since

P1 10
(Ty+To+L+Th i +T)0p

lim sG¢ (s) =
im c(9)

limGe (s) =
lim c(9)

Remark 2° Let Gy(s) be the transfer function from
reference r to controller output c. Since

Go(s) . 1

&% 5.9 PEGE

(6)

does not depend on the time-delay T, it follows that the
control system response c(t) to aunit step reference does not

depend on T, too; that meansthat c(t) isthe sameasinthe
case of aplant without time-delay.

Remark 3°. To implement the controller (3) one can use the
block-scheme in Figure 1, where

Ci(9)= ()

1
G(sP(9)’
e’
P(s)

C,(5)=Gy(9) = 8

1) -

-

()

Fig. 1. The controller implementation scheme.

Theorem 2. Consider the plant Gp(s) in Theorem 1 of
proportional type (pg* 0,qp* 0). For a given magnitude

ratio M , the step response time of the control system has the
smallest value by choosing
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Go Pn
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Proof. For a stable control system with proportional plant,
the magnitude ratio is the ratio between the initial value and
the final value of the controller output ¢ to a unit step

reference [4]
m =0
c(¥)

Let Gy(s) be the transfer function from reference to
controller output. Since

Go(s) . 1
Gp(s) P(9G(s)’

Gy(9) =

using theinitial and final value theorems, we get

1

¢(0-)= lim Gy (s) :W '

and

i -1 _ 1
c¥)=lIm&i(9=5 (0)G(0) ~ G(0)

Thisimpliesthat

G(0)

" limP (9G(9) (10)
S® ¥

and hence
_ Go Pn
Podk T1To LTh ¢

or
TTo LTy  =—0Pn
MpoQi

For a given magnitude ratio M , from the arithmetic mean-
geometric mean inequality

T +To+ L +Thk . ok
"NT T LT s
n- k 112 n- k

it follows that the sum T; + T, + L+ T, attainsits minimal
value when

Yo Pn
T1:T2:|_:T -k =n-k— .
" \ Mpodk

On the other hand, since
(Tl +T2 + |_+Tn_ k)S+1

is the best first order approximation of P (s) by Padé

approximation, we can approximate the closed-loop transfer
function (4) by

e Ts

Gy (s)» .
(Ty+To + L 4Ty )s+1

Therefore, the closed-loop response time to a step reference
has the smallest value if the equivalent time constant

T +To+L+Th

isminimal; that is, when (9) holds.
Theorem 3. Consider the plant Gp(s) in Theorem 1 of
simple integrator type (pg =0, p;* 0,qg* 0). For a given

magnitude ratio M , the step response time of the control
system has the smallest value by choosing

Pn
T=To=L=T,.x =n-k .
" \ May

Proof. For a stable control system with simple integrator
plant, the magnitude ratio is equa to the initial value of the
controller output ¢ to a unit step reference

(11)

M =c(0+) .

In practice, the magnitude ratio M must be bounded to a
value lessthan 10
As shown in the proof of Theorem 2, we have

1

M = P (90 12
S® ¥

From (12), we get

Pn
Ak TiTo LTy

or

Pn
May
Therefore, for the same reasons as in the proof of Theorem 2,
choosing

/ Pn
T, =T, =L=T,_ =n-K
1=12 n- k Ma

provides the smallest closed-loop response time to a step
reference.

To illustrate this proposed design procedure we present two
applications for a proportional and integrator plant,
respectively.

T oL T =

Example 1. Let us consider the proportional plant

-10s
Gp(9)= 2(223+1)e .
(3s+1)“(6s+1)(8s+1)

For M =1, from (9), (2), (7) and (8) we get

T,=T,=T,=6, P(s)=(6s+1)°>,
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(3s+1)?(8s+1) for a larger value of the magnitude ratio M is a little less
GO robust with respect to the estimated plant time-delay.
2(2s+1)(65+1)2 =P P &
-10s 1.2
Ca(5)=Gq(9) = 3
(6s+1) 1
Similarly, for M =8, we get 05
T,=T,=T3=3, P(9)=(3s+1)3, '
0E
3s+1)(6s+1)(8s+1)
y(9= 8D+ DB+ g
2(2s+1)(3s+1) :
- 10s nz

e
C =G = .
2(8)=Gp(s) G117

In Figures 2 and 3 are shown the unit step response yp (t) of
the proportional plant and the unit step responses c(t) and
y(t) of the closed-loop system for M =1 and M =8,
respectively ( c- control variable, y - controlled variable).
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Fig. 2. Unit step responses of the plant ( yp) and closed-loop
system(cand y) for M =1.
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Fig. 3. Unit step responses of the plant (Y, ) and closed-loop
system(cand y) for M =8.

The robustness of the control agorithm in the presence of
uncertainty concerning the estimated value of the plant time-
delay is illustrated in Figure 4 and 5, where three values of
the time-delay in the controller block (8) are considered:
T =8 (response y;), T=10 (response y) and T =12
(response Y, ). One can see that the control system designed

DEI 10 20 30 40 S0 BO 7D £
Fig. 4. Unit step responses of the closed-loop system for
M =1 and three different values of the time-delay in the
controller block (8).
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Fig. 5. Unit step responses of the closed-loop system for
M =8 and three different values of the time-delay in the
controller block (8).

Example 2. Let us consider the integrator plant with the
transfer function
s+1)e 108
Gp (S) = ( ) .
S(2s+1)(4s+1)(8s+1)

For M =1, from (11), (2), (7) and (8) we get
T,=T,=T,=4, P(9)=(4s+13,

Cy(s) =3
(s+1)(4s+1)
- 10s

C =G = .
2(8)=Go(s) 4srD)?

For M =8, we get

T,=T,=T3=2, P(s)=(2s+1)°,

cu(g= sy,
(s+D(2s+1)
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-10s
C2(5)=Go(s)=

(2s+1)3

In Figures 6 and 7 are shown the unit step response yp (t) of
the integrator plant and the unit step responses c(t) and y(t)
of the closed-loop system for M =1 and M =8.
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Fig. 6. Unit step responses of the closed-loop system with
integrator plant for M =1.
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Fig. 7. Unit step responses of the closed-loop system with
integrator plant for M =8.

3. SECOND DESIGN PROCEDURE

Theorem 4. Consider a time-delay plant given by

Gp(s)=G(s)e ™°, (13)
where
G(9)= als) _ oS +0y.18 T +L+qg

P(S)  pps" +0q 18" L+ py

is a stable, non-derivative and minimum-phase rational
function having the polynomials p(s) and r(s) coprime,
k<n, p,*0,0qtO0.

For any n- k +1 degree polynomial

P (s)=(Ms+)(Tos+ )L (Ty 418+

with all T; >0, choosing the semi-proper controller

(14)

As+1
G(9IIP (9)- (As+De ]’

Ge(s) = (15)
where A=T; +T, +L+T,_ 41, the open-loop system is of
simple integrator type and the closed—loop system has the
transfer function

_(As+De’™
Gy (9) P (16)

Proof. The controller is semi-proper because

A
lim Ge (9) = lim —S*1 Gk 10
S® ¥ ¥ G(P(s) prTyTo LT ka1

The open-loop system is of simple integrator type, because
from its transfer function

(As+e 'S
P(s)- (As+De ™’

Gy (8)=Cc (9)Gp(9) = 17
we get
ISi®n?) Gy (s) =?1 .

The closed-loop system has the transfer function

Gy _(As+De ™

Co(9=13 Gy P(s)

Remark 4°. In the case of a proportional plant, the controller
is of simple integrator type, since

It is easy to check that the controller becomes of double
integrator type if the plant time-delay is zero.

If the plant is of simple integrator type, that is pg=0,
p;* 0 and qg* 0, then the controller is of proportional
type, since

IImGe (s) =——.
im c (9 a

For an integrator plant without time-delay, the controller
becomes of simple integrator type.

Remark 5°. To implement the controller (15) one can use the
block-scheme in Figure 1, where

_ As+l
Ci(s) "GP (18)
-Ts
Ca(9)=Go(g)=A3HDe 7 (19)

P(s)

Remark 6°. We can write the closed-loop system transfer
function (16) in the form
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(Ty+To+L Ty k41)S+l 1
(Tys+D(Tos+L(Th. k+15+1)

The step response of the closed-loop system is non-
monotonic, but the overshoot and the response lag time are
small if we chose a dominant time constant significantly
larger than the other time constants [3]. Choosing

Go(s)= (20)

Ty >>Ty =Tz =L=Ty. k41, (21)
we get

j+n-Kk)Tos+1
Go(s): (J ) ZS e-TS (22)

(jTos+D(Tps+)™K

where j=T;/T, >1. Inthiscase, the step response overshoot
S -k (1) isastrictly decreasing function satisfying

lims . (j)=0.
i®¥ n-k (1)
For a control system with proportional plant and semi-proper

controller, the magnitude ratio of the control variable ¢ is
given by

M :@:G(O) lim ﬂ,
c(¥) so¥ P (s)G(s)
that is

y =J0Pn (Ty+To +L+Tp (41)
Podk T1T2 L-Th- k+1

or
v (i+n-Kaopy

_ _ 29)
iPoaT2"

Thus, the controller design procedure is as follows:

- determine j =T, /T, to have an overshoot less than or equal
to the imposed one;
- determine T, from (23) to have the imposed value of the
magnitude ratio M ;

- determine T, = jTo, P (s)=(Tys+1)(Tos+)™ X and then
G (s) with (18) and (19), where A=T; +(n- K)T>.

Remark 7°. Using the proposed procedures one can design a
two degree of freedom controller in order to have a large
magnitude ratio related to a step disturbance additive to the
controlled variable and a smaller magnitude ratio related to a

step reference. To do this, we can use a suitable first-order
filter for the reference signal.

Example 3. For the proportional plant

2(3s+1)e 108
(2s+1)(6s+1)(8s+1) '

Gp(s)=

we propose to design a controller such that s £5.5% and
M =60/7, where s is the overshoot of the closed-loop

system, and M isthe magnitude ratio of the control variable
to a step reference.
By (24), we have

(j+2)Tys+1 o 10s

Go(s)=— 5
(jTos+D(Tos+]

Since s =5.46% for j =28, using this vaue of j, from
(25) weget T, =2. Then,

T,=T,=56, P(s)=(56s+1)(25+1)2,

A:Tl + 2T2 =60,
Cy(s)= 2(605+1)(63+1)(85+1) ,
(3s+1)(56s+1)(2s+1)

(60s+1)e” 108

Ca(9)=Gp(9=—— .
(56s+1)(25+1)

In Figure 8 are shown the closed-loop responses c(t) and
y(t) toaunit step reference.

Fig. 8. Unit step responses of the closed-loop system with
proportional plant (s =5.46 %, M =60/7).

4. CONCLUSIONS

Two procedures concerning the controller design for a time-
delay control system have been proposed.

In accordance to Theorem 1, the designed open-loop system
is of simple integrator type, the controller is semi-proper and
stable, and the closed-loop system is of monotonic type and
has a time-delay equal to the one of the plant, no zeros and
negative equal poles. The poles are chosen to have a small
response time and a given magnitude ratio to step reference.
By the second design procedure, the designed open-loop
system is also of simple integrator type, the controller is semi-
proper, and the closed-loop system has a time-delay equal to
the one of the plant, one negative zero and negative poles
from which one is dominant and the other are equal.

The presented numerical examples for proportional and
integrator plants show the effectiveness of the proposed
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control procedures. As arule, the control system designed for
a larger value of the magnitude ratio has a smaller step
response time, but is a little less robust with respect to the
estimated plant time-delay.
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