
CEAI, Vol.12, No.4, pp. 30-35, 2010 Printed in Romania

Increasing Reliability of Web Services

Cezar Toader*

*“Politehnica” University of Timişoara, Automation and Applied Informatics Department,
Romania (Tel: +40-256-403000; e-mail: cezar.toader@gmail.com).

Abstract: The main subject in this paper is the concept of reliable Web services, which are the blocks for
building large distributed systems. This paper presents a fault tolerant Web services architecture which
maintain client transparency. Important functionalities such as replication, fault management and client
transparency are analyzed.

Keywords: Web services architecture, reliability, replication, performance, relative delay.

1. INTRODUCTION

The Web is increasingly used for critical distributed systems,
applications and services. Service-Oriented Architecture
(SOA) using Web Services is accepted as the architecture
capable to interconnect applications running on different
operating systems and facilitate complex interactions
between autonomous and heterogeneous systems both within
organizations and between them.

Web Services enable the software of different enterprises to
interact with each other, even if those enterprises use
different hardware, different operating systems and different
programming languages. Web Services can streamline
business activities over the Internet by invoking operations
automatically that, otherwise, would be invoked manually by
a human through a browser and by enabling direct computer-
to-computer interactions between different enterprises.

The benefits of Web Services are significant because they
facilitate automation of business activities distributed over
the Internet across multiple enterprises and collaboration
among enterprises by coupling together the business
processes running on their systems.

Failures in Web applications can lead to erroneous processing
or even crashes in important systems like ecommerce,
banking or stock trading.

One of the key causes of service disruptions is server failure.
Hence, fault tolerance techniques that allow providers to
deliver uninterrupted Internet services despite server failures
are increasingly important.

For many distributed systems based on Web services there is
a large base of installed client-applications and it is very
complicated to require all of those to be modified. This is the
reason why service providers look for those fault-tolerance
schemes that are client-transparent, which means they can
operate without requiring any special action by the client and
without modifying the client application. This client
transparency is an important requirement with respect to both
the client application and the client operating system.

In this paper we propose a fault tolerant architecture
containing several servers grouped in one autonomous unit
based on servers and Web services. This unit accepts
connections from clients, receives their requests, executes a
suite of internal operations, internally deals with operation
faults when they appear, and sends a reply to the client
according to its request.

This server group has important functionalities: replication
management, fault management, logging and
synchronization, client transparency.

The proposed architecture extends the Web Services
architecture by adding new components in order to build a
reliable autonomous unit: WS-Manager, WS-Status Logger,
Request Logger, and Message Router.

The major contribution of this paper is the extension of Web
Services architecture in order to increase system reliability
and maintain client transparency.

The rest of the paper is structured as follows. Section 2
provides a short background on Web Services. Section 3
describes important aspects concerning concepts as
dependability, system reliability, system failures, faults, fault-
tolerance, and client transparency. Section 4 presents the
proposed architecture and Section 5 describes
implementation aspects and a performance evaluation.
Section 6 presents related works and Section 7 presents final
conclusions.

2. WEB SERVICES

Web Services standards define the syntax of Web Services
documents, the format of messages, and the means to
describe and find Web Services. They do not define
implementation mechanisms or application program
interfaces, which remain proprietary to vendors (Booth, et al.,
2004).

Different vendors can implement Web Services
infrastructures in different ways. Thus, Web Services
standards provide interoperability between Web Services that
are implemented using different hardware, different operating

mailto:cezar.toader@gmail.com)

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

systems and different programming languages, but they do
not provide portability of application programs from one
platform to another.

The basic Web Services standards comprise:

• The eXtensible Markup Language (XML), which
defines the syntax of Web Services documents, so that
the information in those documents is self-describing.

• The Simple Object Access Protocol (SOAP) for XML
messaging and mapping of data types, so that
applications can communicate with one another.

• The Web Services Description Language (WSDL) for
describing a Web Service, its name, the operations that
can be called on it, the parameters of those operations,
and the location to which to send requests.

• The Universal Description Discovery and Integration
(UDDI) standard, which is used by the Registry where
providers publish and advertise their Web Services, and
clients query and search for Web Services to discover
what the services offer and how to access them.

3. DEPENDABILITY OF WEB SERVICES

In complex applications Web services need to connect to
other Web services in order to form composite Web services
and complex Service Oriented Architectures (SOA). If one
component in this chain of services is not available or reliable
the whole system is affected.

A correct service is delivered when it implements the system
function. A system failure occurs when the delivered service
is different from the correct service. This deviation means
that the service does not comply with its well-defined
specification. An error is that part of the system state that
may cause a failure. A fault is the cause of error. A fault may
be active or dormant. When is active, the fault produces an
error and, subsequently, a system failure (Avizienis, et al.,
2004).

Web Services introduce new problems into enterprise
computing, in particular:

• Faults in the computer system of one company can
adversely affect another company;

• Data consistency, integrity and privacy are difficult to
maintain;

• Lack of availability, reliability and security can damage
relationships between a company and its customers,
suppliers and partners.

These problems become more challenging as business
activities become more automated, as Web Services trigger
other Web Services, and as business activities involve more
enterprises and more steps (Moser, et al., 2007).

Dependability is an integrative concept that encompasses
several attributes: availability, reliability, safety,
confidentiality, integrity, maintainability (Avizienis, et al.,
2001). Availability means “the readiness for correct service”
whereas reliability means “continuity of correct service”.

One important mean to attain dependability is fault-tolerance.
This term means “how to deliver correct service in the
presence of faults”.

In so-called dependable systems, replication is widely
accepted technique to avoid system failures. Thus, system
architects implement a service using a group of redundant,
physically independent, servers, so that if some of these fail,
the remaining ones still have the capability to offer the
service to clients (Cristian, 1991).

Replication protects a server application against faults, so that
if one replica becomes faulty, another replica is available to
provide the service to the clients. The most commonly used
replication strategies are passive, active and semi-active
replication (Moser, et al., 2007).

4. THE PROPOSED FAULT-TOLERANT
ARCHITECTURE

This section presents the proposed Web Services architecture
enhanced with fault-tolerance.

We propose a fault tolerant architecture containing several
servers grouped in one autonomous unit based on servers and
Web services. This unit accepts requests from clients over a
functional connection and sends replies to the clients
according to their requests. This group of servers and Web
services internally deals with operation faults when they
appear and maintain client transparency.

This unit is an “autonomous best-effort delivery system”
according to the client’s requests. The autonomy means that,
over a functional connection, the client application is not
aware of internal system faults and recovery.

The analysis starts with the well-known three-tier
architecture, as shown in Figure 1.

Fig. 1. The three-tier system architecture.
(The reply 4 will be sent to the client after steps 2 and 3.)

The goal is this: using a functional network connection
between the client application and the enterprise’s frontend
servers, the client must receive a reply from the enterprise
application according to the request previously made and all
service faults which may appear within enterprise LAN must
be internally solved and must not be shown to the client.

In order to achieve this goal, important functionalities must
be implemented on the server side: replication management,
fault management, request logging, service synchronization,
and client transparency.

The proposed architecture contains specific components
implementing the above-mentioned functionalities.

32 CONTROL ENGINEERING AND APPLIED INFORMATICS

4.1 System components

Fig. 2. The proposed architecture.

The client requests are received by Web Services Manager
(WSM) at the Entry Point, as in Figure 2.

WSM is responsible for fault detection and recovery after
service faults. In order to do this recovery, WSM uses a
Request Logger which saves in a local store all client
requests in a well defined order. Every request gets an ID in
order to uniquely identify it afterwards. The stored messages
will be used when a subsystem must be updated after a crash.

WSM acts like a monitor of web services. It maintains a data
structure called WS-STATUS where important information
about the service status is written.

After checking the web services status, WSM acts like a
dispatcher. It uses a Message Router to redirect the current
request to a functional Web service called primary worker or
to a functional Web service called backup worker, when the
primary worker status is FAULT.

The proposed architecture has two layers:

• Application Layer, which contains WS Manager, Request
Logger, WS-STATUS Logger and Message Router;

• Service Layer, which contains many composite Web
Services (WS 1, WS 2 ... WS n), and Atomic Services.

4.2 Assumptions

We start based on several assumptions:

• a functional network connection is established between
the client and WSM;

• all client requests arrives at the Entry Point (EP);
• faults may appear within the system at the level of

backend services;

• An ID is given by WSM to each request;
• WSM locally stores all requests including their ID;
• WSM is able to detect primary worker faults and

redirect the request to backup worker(s);
• The stored list of requests is used when a worker is back

online after a fault.
• The client application discovered the service by using a

Service Registry (UDDI) and its request will be
processed within the system.

4.3 Normal operation

When a request is arrived at Entry Point (EP), in the first
step, WSM creates a Request ID for easy identify this
message and stores both the Request ID and the message
content in its own local database. This information can be
retrieved afterwards, if necessary. Thus, WSM implements an
important functionality: request logging.

Table 1. Logging requests

Request ID Message content
RQ20100315-0000001 ... (XML code ...)
RQ20100315-0000002 ... (XML code ...)
... ...

WSM maintains a data structure called WS-STATUS. At a
given time, a working Web service can be only in one of two
states: READY or BUSY. After the initialization phase of the
system, every worker is READY. This status is written in the
structure WS-STATUS. A WS worker is given a job when its
state is READY. When a worker starts a job, WSM notes its
state as BUSY. Also, WSM notes the start time for that job in
WS-STATUS. When the job is done and the worker is
READY again the execution time is written in WS-STATUS.

The normal fault-free operation is done by WSM and primary
worker as follows. WSM reads the information within WS-
STATUS data structure to check the primary worker’s state.
This state could be READY, BUSY, or FAULT.

In Table 2, the following situation occurred: WS Manager
needs to send a specific Request to all services, but their
status is different.

The status of WS 3 is FAULT, so the job cannot start. The
same job was started on WS1 at a specific time, it was
successfully done in 38 milliseconds and the current state of
WS1 is READY. The job was started on WS2 at a specific
moment, but WS2 didn’t finish the job. Its status is BUSY.
Afterwards, WS2 may finish the job successfully and return
to the status READY. The execution time will be written.

Table 2. WS-STATUS

WS RQ ID STATUS Starting
time

Execution
time (ms)

WS1 RQ...010 READY 18:21:15,652 38
WS2 RQ...010 BUSY 18:22:35,083 N/A
WS3 RQ...010 FAULT N/A

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

At any time, one of the services is chosen as Primary Worker.
At the beginning, the primary worker is WS1.

If the state of primary worker WS1 is READY, then the
following operations are executed:

1) WSM uses the Message Router to send the request to
the Primary Worker WS1.

2) WS1 sends an acknowledgment to WSM
3) WSM writes in WS-STATUS the new state of Primary

Worker (BUSY) and the starting time.
4) WS1 solve the request and sends the reply to WSM.
5) WSM receives data and writes the new state of WS1

(READY) and the execution time in WS-STATUS.
6) WSM sends the reply to the client.

If the state is BUSY then WSM waits for a specific amount
of time and try again until the primary worker’s state
becomes READY, or until the maximum number or retries is
reached. The case of fault in the system is described below.

4.4 Faults, recovery, and synchronization

From its internal database, WSM is able to find which was
the last successfully Request ID on every WS worker.

There are a variety of situations where errors can occur in the
primary worker’s normal operation. The taxonomy of faults
is presented by Avizienis, et al., (2004).

A fault occurs when the execution of the worker is required
but results are not returned. Due to the nature of the
distributed system, faults can be situated in different places:
• in the primary worker’s host;
• in the primary worker’s process on the host;
• in the execution thread on the host;
• at the level of atomic services;
• on the connection between worker’s host and WSM;
• on the connection between worker’s host and the host of

atomic services and/or database systems.

In time, faults can occur:
• during request transmission to the primary worker;
• during processing of the request by the worker;
• during processing in the atomic services;
• during the process of sending replies from database

systems to atomic services;
• during the process of sending replies from atomic services

to primary worker;
• during the process of sending replies from worker to the

WS Manager.

All the above-mentioned situations could determine the
primary worker to remain indefinitely in the state BUSY or
even the worker’s process to crash.

If the status of primary worker is BUSY (not ready), but the
backup worker is READY, then the above-mentioned steps
(from 1 to 6) are realized by that backup worker. During this

time, a recovery from error must be started for primary
worker. WSM is responsible for sending all missed requests
to the primary worker. All missed requests will be processed
in the same order as they arrived in order that both services
WS1 and WS2 to be in the same final state. Thus, WSM
implements another required functionality: service
synchronization.

All requests involving data writing in databases must be
processed in a transactional way. If an operation succeeded,
then WSM will ask Request Logger to write this in local
database containing all requests.

Logging all requests, working with databases in a
transactional way, and writing the success of the requests are
very important elements in case WSM experiences a crash.
After WSM restarting, the newly created process will
retransmit to workers all logged requests which don’t have
the attribute successfully done. This mechanism allows the
recovery of WS Manager from failure.

All these faults, recovery operations and service
synchronizations are client transparent. The client
application is not aware of all these operations. The system
faults are masked by using a group of web services (workers)
and a manager able to deal with fault detection, replication
management, logging and recovery.

4.5 Changing the Primary Worker

WSM maintains statistics about workers activity in its own
database: total working time during last 5 minutes, and last
30 minutes, and, very important, the ID of the last
successfully solved request. Hence, according to its
configuration, WSM is able to detect which was the fastest
worker in the last 5 minutes or in the last half hour.

Periodically, according to its configuration, WSM will
choose the fastest WS as the new Primary Worker, or it will
maintain the current one.

5. IMPLEMENTATION DETAILS

Our implementation used identical systems for hosting server
processes. The configuration is indicated below, in Table 3.

The Web server was IIS 7, running on a Windows Server
2008 operating system, with .NET Framework 3.5 SP1
installed. MS SQL Server 2008 was used as database server.

Table 3. Server configuration

OS Windows Server 2008 Standard
Framework .NET Framework 3.5 SP1 with WCF
DB server Microsoft(R) SQL Server 2008
Web Server Internet Information Server IIS 7
IDE Visual Studio 2008 Professional
CPU Intel(R) Core 2 Quad, Q6600, 2.4 GHz
Memory 2 GB, DDR2
Network Intel(R) 82566DC, Gigabit Network
Hard disk SATA, WD2500AAKS, 7200 RPM

34 CONTROL ENGINEERING AND APPLIED INFORMATICS

The necessary WCF (Windows Communication Foundation)
services were created. Then an ASP.NET application was
built as hosting environment for these services. The working
network segment was separated from the rest of the LAN to
avoid any unnecessary network connection.

There are several distinct operations performed within the
system. Some of them could be considered major operations
unlike others called preparatory operations.

We consider as major operations the following two: primary
worker processes the client request (including here all
subordinated calls to databases and other services), and the
response message is sent by primary worker to WSM. Their
duration is noted tPROC, respectively tRESP.

We consider as preparatory operations the following: the
client request is logged by the Request Logger, then the
request is forwarded to Primary Worker which sends an ACK
message to WSM which writes in WS-STATUS the new
state of worker as BUSY. The duration is noted tPREP.

The preparatory operations occur before the major
operations. We consider faults may appear during the main
operations and, as a result, their period is affected by the
appearance of faults and the recovery process.

In order to evaluate the performance degradation when
replication process occurs we modified the initial code to
report the time of starting processing a request and the time
of reply. Several hardware failures were simulated in order to
see if the system is able to recover. We calculate the time
span for different type of operations.

A small delay appears when the replication occurs. A more
visible delay occurs when the system executes services
synchronization. The absolute value of these delays is not so
relevant because the size of the requests and especially of
responses may vary on a large scale.

A more appropriate indicator of replication influence is the
relative delay of the system, defined as:

0t
tRD r= (1)

Here t0 is the time span of a certain operation without
replication, and tr is the time span of the same operation
when replication occurs.

According to previously made notations, the normal
operation time span is as follows:

RESPPROCPREP tttt ++=0 (2)

When a fault occurs and the system realizes a recovery from
error, the operation time span depends on partial processing
(tP_PROC) and recovery duration (tRECOVERY) as follows:

() RESPRECOVERYBLKPROCPPREPr tttttt ++++= _ (3)

During our experiments, the values for relative delay were
significantly influenced by the size of SOAP message, the
blocking duration tBLK, and recovery duration as follows:

431121RD .. ÷= (4)

The model analyzed here treats requests one after another, no
matter of the client who send it. In our experiments we did
not consider any form of client prioritization. More clients
simply mean more requests, but the operation mode remains.

If the number of clients increases, the system will be
increasingly loaded and the response time seen by the client
will also grow. In this paper we discussed about fault-
tolerance and recovery from errors. According to the
principle of separation of concerns, the overload issues are
analyzed and solved by different load-balancing techniques.

Our experiments were based on intentionally caused faults.
We searched for a proof of concept. In the real systems, the
fault appearance and the nature of the faults are not easy to
predict. Specific tests are necessary on a real system in a real
environment. Only then engineers can determine significant
parameters such as number of failures for the worker during
the last 24 hours, or total system delay during last 24 hours.
Apart from fault-tolerance and system recovery, further
experiments concerning load-balancing in a multi-client
environment could be very useful for dependable systems.

6. RELATED WORKS

Web services enable application-to-application interaction
built on top of Web protocols. Moser, et al, (2007) presented
an overview of techniques for building dependable and
secure Web services.

The availability of network services may be increased by
using many schemes providing a system to route new
requests that arrive after a fault to a working server. But such
schemes do not support recovery of in-progress requests. The
published approaches include the use of DNS system to
remove the address of faulty servers from service (Brisco,
1995), and schemes which direct clients to an alternate server
replica (Suryanarayanan & Christensen, 2000)

There are various fault tolerance schemes for network
services that are not client-transparent. These are so-called
client-aware solutions. Some of them require modifications
to the client application while others only require changes to
the client OS kernel (the TCP implementation). One class of
client-aware solutions are implementations of a 2-phase
commit protocol on a 3-tier system, ensuring the transactions
are performed exactly once and that in-progress requests are
recovered (Frolund & Guerraoui, 1999).

The Web services community has developed application-
level reliable messaging protocols built on top of SOAP and
HTTP: WS-Reliable Messaging 2009 (Davis et al. 2009). But
these protocols are not client-transparent and do not address
some key topics such as message persistence and recovery
from fault (Moser, et al., 2007).

A framework for building fault-tolerant Web services on top
of SOAP is FT-SOAP. It facilitates a configuration with a
primary and a warm backup replica, where a replication
manager is able to promote the backup to be the new primary.
But the client has to be modified in order to be able to
redirect a request to the backup replica (Fang et al. 2007).

CONTROL ENGINEERING AND APPLIED INFORMATICS 35

7. CONCLUSIONS

In this paper, a fault tolerant architecture was conceptualized.
The proposed two-layer architecture internally deals with
faults, without modifying interoperability of existing
enterprise services. Internal algorithm in this architecture
allows developers to use different programming models for
Web services.

Important functionalities of this reliable architecture were
analyzed in the paper: replication, fault management,
logging, recovery, and client transparency.

The client applications, such as Web browsers, and client
operating systems are not under the control of service
providers. Hence, relying on client-side participation for fault
tolerance is not practical and was not discussed here.

The proposed architecture is based on a Web Services
Manager, a Request Logger, and a Status Logger, working
together. Based on information given by the loggers, the Web
Services Manager is able to decide which Web Service is the
primary worker and when the system synchronization must
be done. The client application sees this system as an
autonomous entity giving the appropriate responses and
internally dealing with faults.

Implementation aspects and experimental details and results
were presented. An evaluation of the influence of replication
phase on overall system performance shows acceptable
delays in case of system synchronization.

REFERENCES

Avizienis, A., Laprie, J.C., and Randell, B. (2001).
Fundamental Concepts of Dependability, Research
Report no. 1145, LAAS-CNRS, 2001.

Avizienis, A., Laprie, J.C., Randell, B. and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable and
secure computing, In IEEE Transactions on Dependable
and Secure Computing, vol.1, no.1, 2004, pp. 11-33.

Booth, D., Hass, H., McCabe, F., Newcomer, E., Champion,
M., Ferris, C., and Orchard, D. (2004). Web Services
architecture, Available at: http://www.w3.org/TR/ws-
arch [Accesed 30 March 2010].

Brisco, T. (1995). DNS support for load balancing, RFC
1794, Available at http://www.faqs.org/rfcs/rfc1794.html
[Accessed 30 March 2010].

Cristian, F. (1991). Understanding fault-tolerant distributed
systems, In Communications of the ACM, vol.34, Issue 2,
1991, pp. 56-78.

Davis, D., Karmarkar, A., Pilz, G., Winkler, S., and
Yalcinalp, U. (2009). Web services reliable messaging
(WS-Reliable Messaging) version 1.2, 2009, Available at
http://docs.oasis-open.org/ws-rx/wsrm/200702 [Accesed
30 March 2010].

Fang, C.L., Liang, D., Lin, F., and Lin, C.C (2007). Fault
tolerant Web services, In Journal of Systems
Architecture no.53, Issue 1, January 2007, pp. 21–38.

Frolund, S., and Guerraoui, R. (1999). CORBA fault-
tolerance: why it does not add up, In The Seventh IEEE
Workshop on Future Trends of Distributed Systems,
Tunisia, South Africa, 1999, pp. 229.

Moser, L.E., Melliar-Smith, P.M., and Zhao, W. (2001).
Building dependable and Secure Web Services, In
Journal of Software, vol.2, no.1, Febr. 2007, pp. 14-26.

Suryanarayanan, K., and Christensen, K. (2000).
Performance evaluation of new methods of automatic
redirection for load balancing of Apache Web servers
distributed in the Internet, In IEEE 25th Conference on
Local Computer Networks, 2000, pp. 644–651.

http://www.w3.org/TR/ws
http://www.faqs.org/rfcs/rfc1794.html
http://docs.oasis-open.org/ws-rx/wsrm/200702

