
CEAI, Vol.12, No.4, pp. 43-50, 2010 Printed in Romania

A new architectural approach for dynamic adaptation of components-based
software using multi agent system

Chouarfia Abdallah1, Bouziane Hafida1

1University of Sciences and Technology Oran Mohamed Boudiaf

Computer Sciences Department
Oran, Algeria

chouarfia@univ-usto.dz, hafida_bouziane@univ-usto.dz

Abstract — Component-based development has become a commonly used technique for building
complex software systems by assembling a set of existing components. In general adapting an application
means stopping the application and restarting it after the adaptation. This approach is not adapted for a
large classes of software systems in which continuous availability is a critical requirement, hence the need
of adapting the application at run-time. In the paper we present an architecture based approach for
dynamic adaptation in component-based software. We are interested in the dynamic adaptation
independently of the nature of the system to be adapted. Also In the case, we use an agent based system to
perform the adaptation. The agent system is guided by an architectural description of the adapted
application. The adaptation mechanism is implemented in the connectors using the flexibility offered by
the Java Scripting programming technique.
Key words: components, dynamic adaptation, multi agent system, architecture description, configuration

1. INTRODUCTION

The development of large software by assembling existing
components is the objective of the components-based
development (Szyperski, 1998). The permanent evolution of
user’s needs and the fast changing in the execution
environments make the software adaptation a primordial task.
In components-based development paradigm, an adaptation
can address (Aksit and Choukair, 2003): Architectural
changes, geographical changes, Interface modification, or
implementation adaptation. The architectural changes consist
of adding or removing components or modifying connections
among them. The geographical changes correspond to the
migration of components from a site to another one. The
interface modification consists of changing the interface of a
component to make it more compliant to the caller’s
expectations, while the implementation adaptation affects the
internals implementation of components without changing
interfaces.

Traditionally, an application is stopped to be adapted. This
approach is not suitable for critical systems that have to be
non-stop and highly available like bank, internet or
telecommunication services. In these kinds of systems the
adaptation must take place at run-time and the application
should not be entirely stopped. Unfortunately, realize such
adaptation is not trivial; there are several conditions and
constraints to be verified, and many problems to overcome.
Some important problems to be considered to make a
dynamic update are (Aksit and Choukair, 2003):

• Maintaining application consistency: states of the
components must not be affected by changes in the
application architecture.

• Preserving bindings of the components: Bindings

have to be preserved by redirecting the calls to new
components and managing transient states.

• Initializing new components: New components must
be initialized with adequate internal state according
to the former component.

• Preserving communication channels by avoiding
message loss, duplication or excessive delays.

In the paper, we describe our approach to achieve dynamic
adaptation of components-based software applications. The
idea is to introduce between two components a connector
(unit of interaction) (Kell, 2007) that intercept and redirect
inter components communications. The adaptation is made
through the adaptation system by acting on connectors. The
adaptation system is not integrated in the application, it is an
independent system composed of software agents, whose role
is to perform and supervise the adaptation operations. The
agents system is guided by a knowledge base, which
contains:
 i) a set of rules that condition the adaptation launching,
 ii) the architecture description of the adapted application,
that enables the adaptation system to ensure the validity and
the coherence of adaptation.

The paper is structured as follows: section 2 presents
related works to the dynamic adaptation. Section 3 describes
the proposed solution to achieve a dynamic update of
components-based software applications. The
implementation details and some measurements relative to
our solution are given in section 4. Section 5 concludes and
presents some perspectives.

mailto:chouarfia@univ-usto.dz
mailto:hafida_bouziane@univ-usto.dz

44 CONTROL ENGINEERING AND APPLIED INFORMATICS

2. RELATED WORKS

Several works dealt with dynamic adaptation problems,
hence the emergence of several approaches.

In the model driven approach, the dynamic adaptation is
based on a components model that designed to support this
kind of adaptation. DCUP (Dynamic Component Updating)
(Plasil et al., 1997) is an example of this approach. In DCUP
the component is divided into two parts: permanent part and
replaceable part. Adapting a component means replacing its
replaceable part by a new version at run-time.

In The reflexive approach, an application has an abstract
level (meta-level) that reify the real system. The adaptation is
made first on the meta-level, after that, the changes are
reflected on the executed applications thanks to the causal
connection between the meta-level and the real system. An
example of this system is DYVA (Ketfi,2004): a reflexive
framework for dynamic reconfiguration of components-based
applications. The framework is decomposed in two main
parts: The base-level represents the concrete application that
provides the expected functionalities and its execution
environment and the reconfiguration machine that contains

i) the different operational modules responsible for
achieving the reconfiguration,

ii) ii) the meta-level which represents the
reification of the concrete application.

The architectural approach uses explicit description of the
executed application through specific languages: the
Architecture Description Language: ADLs (Medidovic and
Taylor, 2000). An ADL describes an application in term of
components, connectors and connection among them. The
adaptation in this approach is verified and validated in the
architectural level before to be applied on the application.
This approach is used by (Qun et al., 2006); the adaptation
takes advantage of both meta-architecture and the mobile
agents. It uses an architectural model to guarantee the safety
of the reconfiguration, while uses mobile agents to automate
the adaptation process in a flexible way.

In the flexible middleware approach, the adaptation is
delegated to the execution platform. In such system the
dynamic adaptation is looked like a non factional properties
offered by the middleware, like security and transactions
management. In (Brinkschulte et al., 2005), the adaptation is
based on the real time middleware OSA+ (Brinkschulte et al.,
2002). The objective is to be able to reconfigure services
during run-time, with a predictable and predefined blackout
time (the time where the system does not react due to the
reconfiguration).

The aspect oriented approach is based on the aspect oriented
programming technique (Kiczales et al., 1997), in particular the
dynamic aspect, which involve plug and unplug of aspects
without stopping, and restarting a running system. DAOP
(Pinto et al., 2003): Dynamic Aspect-Oriented Platform is an
example of such system. DAOP provides a composition
mechanism that plugs aspects into components dynamically
at runtime. The composition between components and

aspects is established during runtime interaction and is
governed by a set of plug-compatibility rules in order to
guarantee their correct interoperation.

Authors in (Oreizy et al., 1998) describe ArchStudio, a tool
that implements an architecture-based approach to runtime
software evolution. The approach is based on an explicit
architectural model, which is deployed with the system and
used as a basis for change. The connectors in the system are
first class elements that have an important role to support
run-time changes. An imperative language is used for
modifying architectures. The tool supports adding, removing
and replacing components and connectors, and changing the
architectural topology. On the same axis, (Georgas and
Richard, 2004) presents an architecture-centric approach to
self-adaptive software applied to systems constructed using
independent components interconnected through first-class
connectors, both explicitly modelled using architectural
descriptions. The architectural models are used as the basis
for the decomposition. The architectural models
representation is make using xADL 2.0 language (Dashofy et
al., 2001): a highly extensible, XML-based ADL. An
extension of this language is also used to define the structure
of observations, responses, and adaptation policies.

In [Qun et al., 2006), the adaptation takes advantage of both
meta-architecture and the mobile agents. It uses an
architectural model to guarantee the safety of the
reconfiguration, while uses mobile agents to automate the
adaptation process in a flexible way.

(Huang et al., 2006) present an approach to recover software
architecture from component based systems at runtime and
changing the runtime systems via manipulating the recovered
software architecture. As soon as software architecture is
recovered, the runtime system can be observed, reasoned and
adapted through its architecture views. The approach
supports the addition, deletion and replacement of the
components and connectors.

3. PROPOSED SYSTEM

The architecture of the proposed system (Belabed and
Chouarfia, 2008) consists of two main parts: the Knowledge
Base and the Multi Agent System SMA in the Fig 1:

3.1 The Knowledge Base: KB

The KB is composed of two parts: the adaptation policies, a
set of rules, which defines the adaptation policy, and the
application architecture description. The formalism used In
the database is based on the logic of predicates with Prolog
based implementation; the choice of this formalism is
justified by:

• The important role that has the architecture
description in the adaptation mechanisms involves a
large number of inferences makes on the
architecture description to guide the adaptation.
Such mechanism is provided in Prolog.

• Prolog can be easily used as descriptive language. A
predicate which presenting a fact is similar to an

CONTROL ENGINEERING AND APPLIED INFORMATICS 45

XML tag, for example: < tag > value < tag >, can be
written in Prolog as tag (value). More, Prolog is
used in several projects to represent more complex
structures such as ontology (Samuel et al., 2006),
which motivated us to use it as an architecture
description language.

• The existing tools facilitate the use and the
integration of Prolog formalism with other
languages (such the java/Prolog interface), this
avoid us to reprogramming the necessary inferences
mechanisms needed in our approach.

Fig 1: Proposed architecture

3.1.1 The adaptation policy

This base contains a set of rules that condition the adaptation
triggering according to the values of certain environment
variables. The rules are in the following form:

 If <event> Then Action

An event can be a significant change in one of the
environment variable like the used memory, network band-
width,).The following example shows the form of rule that
trigger an adaptation (replacement of component in the
example) if the rate of the used memory exceeds the value
“val”.

 Event (’t_Memo’, Value):- Value > val, Replace (compo1,
compo2).
The predicate “Event” has two parameters: the first specifies
the type of context concerned by the event (the rate of the
used memory); the second specifies the value of the event.
The action "Replace (compo1, compo2)" will be triggered
only if the condition "Value > val" is true.

3.1.2 Architecture description
This base contains:

• The detailed specification of each component of the
base of components in term of provided and
required interfaces and operations of each interface.

• The architecture description of the executed
application (components and interactions).

• The Inferences rules, which used to deduce the
correspondences and compatibilities between
components.

• A set of rules is used to ensure the coherence and the
validity of the adaptation.

The detailed specification of the proposed formalism is out
the scope of this paper.

3.2 Multi Agent System MAS

Using MAS is justified by two main reasons:
• To adapt a distributed application requires using a

tool which was acquired in MAS.
• The design of MAS is in mature phase, we can use

an MAS platform qualified efficient and stable. In
addition, the qualities of MAS such as
communication, flexibility, scalability and mobility
facilitate the tasks of adaptation.

The MAS contains two agents: an adaptation agent A-A and
an environment agents E-A (Fig 2).

Fig 2: Multi Agent System class hierarchy

1. Adaptation agent A-A : The role of this agent is
• Takes decisions about the adaptation triggering,

according to the E-A notifications. The A-A uses the
adaptation policy rules to accomplish this task.

• Achieves the adaptation according to the actions
deduced from the adaptation policy rules. The
adaptation operations are guided by the architecture
description base.

• Modifies the architecture description base after each
operation according to the realized changes on the
application level.

The A-A achieves the above operations through three
components: the rules manager, the adaptation manager and
the architecture manager.
The rules manager is responsible for the manipulation of the
adaptation policy rules, if a decision to adapt is taken, the
rules manager informs the adaptation manager to perform the
operation. This operation is guided by the architecture
manager whose provide the necessaries inferences from the
architecture description base. The architecture manager is

46 CONTROL ENGINEERING AND APPLIED INFORMATICS

also responsible to reflect the changes made on the
application on the architectural level. This operation ensures
the matching between the executed application and the
description of this application.

2. The Environment Agents E-A: The role is the control of
 the execution environment and the notification of the A-A
 if significant any changes appears in the environment
 variables (Belabed and Chouarfia, 2008).

3.3 Adaptation principles

The idea consists to associate for each component a
connector, which implements its required interfaces. The
inter components calls are done through these connectors.
The adaptation mechanism acts directly on connectors to
achieve the adaptation (Fig 3). Each connector implements
the necessaries mechanisms (for calls interception and
redirection) that allow the adaptation agent to perform the
update.

Fig 3: Adaptation principle.

Using Fig 3, we explain the structure of connectors in our
approach. In the example, we assume that C1 component
interacts with C2 component trough a connector in
synchronous communication mode.
The C1 component requires interface I2, which the
specification is:

Interface I1 {

Result1 M1 (param1.1, param1.2);
 }
While "Result1" is the return of method M1, param1.1 and
param1.2 are the input parameters.
The C2 component provides the interface I2 which
specification is:

Interface I2 {

Result2 M2 (param2.1, param2.2);

 }

The basic structure for the connector is as follows:
Connector implement I1 {
Result1 M1 (param1.1, param1.2)

{
Return execute (‘Script’);
}
 }

The script code

Listing 1: Script code

The body of method M1 of connector is implemented with a
script that makes the call to method M2 of C2 component,
with the necessary parameters and return types casting. The
replacement of the C2 component is made by changing the
executed script in the body of connector’s method (M1 in the
example).
The system is designed to support the addition, removal,
replacement and migration (change of the deployment server)
of components. The A-A operates according to an adaptation
plan, this is a set of basic algorithms specific to each
operation (ex: addition or removal operation).

Before any operation, the components directly implied in the
adaptation operation must to be in a passive state (they not
accept incoming calls), this is possible thanks to the
connectors that can queue calls to a C component during
adaptation.

A dynamic connection between two components C1 and C2
is to put in interaction between these two components
through two methods (ports) M1 and M2. M1 is a required
method for C1 and M2 is a provided method by C2, the
connection is done by the A-A while indicating to the
connector associated with C1 the name of the C2 component
and the method to be called M2. A phase of mapping
between the two methods is necessary before establishing
connection. The correspondence concerns the parameters of
call, their order and the type of return of each method. The
mapping is done manually by the administrator of the
application using the architecture description. The
administrator must provide the methods of calculation (script
code) for conversion between the types of the parameters of
call and the type of return of each method. The methods are
transmitted then to the connector responsible for the
connection between the two components. To make
conversions in an automatic way after connection, the
administrator must also manage the semantic correspondence
between the methods to be connected to avoid the semantic
abuses use.

The dynamic disconnection of a component consists in
making it passive, i.e. prohibit any incoming call towards this
component.

// type casting of parameters call
Param31= castingToPramr2.1(param1.1) ;
Param32= castingToPramr2.2 (param1.2) ;
// call of C2 component’s M2 method
Result3 = C2.M2 (Param3.1, Param3.2);
// Result type casting
Return cast_to_Resul (Resul3);

CONTROL ENGINEERING AND APPLIED INFORMATICS 47

3.3.1 Component Addition
Add a new component to an application corresponds to
connecting each component port (interfaces operations) with
the corresponding port of the application components. So an
addition is a succession of connections. The addition is done
as follow:

 Listing 2: Component addition code

3.3.2 Component Removal

A component is removed only if it does not refer to any
component and no component refers to him, this condition
can be verified at the architecture level when the component
is not implied in any interaction rule. The suppression
algorithm is defined as follow:

 Listing 3: Component removal code

3.3.3 Component Replacement

Fig 4 shows the replacement of the C3 component by the
NewC3 component. In the example, the C3 component is in
relation with two components C1 and C2 through provided
interfaces and in relation with C4 through a required interface.
The adaptation consists then to replace the C3 component by
the NewC3 component. Before starting the replacement

operation the two components must be passed in
correspondence phase.

Fig 4: Component replacement.

After corresponding phase, the adaptation agent achieve the
replacement according to the following adaptation plan:

1. Referring to the architecture description, the adaptation
agent localises all connectors in relation (in provided
interfaces) with the component to be replacing (« con
1.3 » and « con 2.3 »).

2. The adaptation agent puts C3 in passive state by ordering
to each localised connector to blocking all messages
towards it.

3. The adaptation agent deploys the new component.
4. The adaptation agent sends the necessaries information to

each connector to make the redirection of the calls towards
the new component.

5. The adaptation agent connects the new component on
provided interfaces with the C4 component, this operation
implies the deployment of the connector associated to the
NewC3 component.

6. If the component to be replaced is with state, the adaptation
agent makes a state transfer between the two components.

7. After a time t corresponding to the maximum of the
response times of the component to be replacing, the
adaptation agent deactivates this last, activates the new
component by unblocking the blocked messages and
announces the end of the adaptation. This mechanism is
used to make sure that the C3 component has finished all in
progress treatments before its suppression.

3.3.4 Component Migration

The component migration consists in moving it from an
application server S to another server NewS. The new server
must provide an ideal execution environment for the moved
component, i.e. it must have all the resources whose
component needs. The migration of a C component towards a
NewS is made by the A-A according to the following
algorithm:

C1

Con
1.3

Con
2.3 C2

New
C3 Con

3.4

C4

C3
Con
3.4

remove (component C) {
Check the absence of reference to or
from C;

 If OK Then remove C;
 else impossible to remove C; }

Add (component C) {

For each port m of c {

- Identify all component Ci and ports mi
to be connected with the port m of
component C;

- For each couple (Ci, mi) {

 make the correspondences with the
couple (C,m) ;

If not correspondence Then cancel
addition; }}

- establish the add at the architectural
level;

- verify the adaptation coherence after
addition (in architectural level)

If not coherence

 Then {cancel addition;

 Cancel the modifications on
architectural level; }

48 CONTROL ENGINEERING AND APPLIED INFORMATICS

Listing 4: Migration component code

3.4 Adaptation coherence

The adaptation coherence is ensured at the architectural level.
Before establishing an adaptation at the applicative level, the
architectural level checks the applicative level. The checking
of coherence is done through a set of rules incorporated in the
architecture description base. Any adaptation considered
incoherent in this level is cancelled. The following section
describes the solutions used in our approach to ensure a
coherence and adaptation safety.

1. Preserving communication channels: the
communication channels are preserved through a
mechanism implemented in each connector, this
mechanism blocks the messages (put them in queue)
during adaptation. The end of adaptation unblocks all
messages on standby, and the application continues its
execution without messages lost.

2. Coherence of the interactions: the coherence of the
interactions between components is ensured through a
manual phase of mapping between ports of
components of the components to connect. This phase
is performed using information provided for each port
in architecture description base. This information
allows to taking into account the semantics of use of
each port and component, which avoids any conflict of
call or use.

3. Conflicts between adaptations: if badly managed can
lead to a total crash of application, in the fact that an
adaptation can cancel the effect of another or introduce
contradictory modifications. This type of inconsistency
is avoided in our approach by allowing one adaptation
at the same time, this can lead to degradation in the
performances of the adaptation system, but it is a cost

to be paid with the profit of a safe adaptation. If an
adaptation is in progress and a new need for adaptation
appears, this second is put in a queue until the end of
the first adaptation. The adaptation queue is managed
so as to eliminate a contradictory adaptations, for
example, if an adaptation need due to an increase in
one of environment parameters is in the queue, if
another adaptation is needed with the reduction of the
same parameter, the first adaptation is eliminated from
the queue.

4. The state transfer: we are not introduce a specific
solution in our approach, we adopt the solution
proposed by (Ketfi, 2004), this solution is specific to
the components written in java, it consists to pass
each component before its deployment by an
instrumentation phase using a byte codes manipulation
tools such as Javassist [Chiba and Nishizawa, 2003) or
BECEL (Dahm, 1999) . In this phase we introspect the
component implementation then selecting the
attributes which constitute the state of component, we
add than the operations getState() and setState() in the
component implementation. This mechanism increases
the complexity of the operation of adaptation, for
example, in component replacement it is also
necessary to make a correspondence between the two
components to see whether it is possible to make a
state transfer, if the mapping fails, the replacement
will be then impossible.

4. IMPLEMENTATION AND EVALUATION

A preliminary implementation of the system is done for the
EJB (Enterprise Java Bean: Sun Micro Systems) component
model. For implementing the interception and redirection
mechanisms in the connectors, we have used the reflexives
properties of Java language and the Java scripting
programming technique (Bosanac, 2007). This technique
consists to execute a script code in a java class. The script
origin can be a file or other application. This technique
enables to the adaptation agent to change connector’s code
dynamically. The script language used in the implementation
is Groovy (Bordeie, (2007).
To evaluate the proposed system, the test application runs on
a PC with PIV 1.7MHz, 256M SDRAM. It consists of a
component client sending a string and component server
receiving this string, printing it in screen and returning it
back to the client.
The evaluation test is made by comparing two versions of the
same application; one implements the adaptation mechanism
on its connectors, the other without this mechanism.

First we have tested the adaptation mechanism influence on
the application response time. The objective is to calculate
the response time increase in the version which implements
the adaptation mechanism according to the number of
requests emitted by the client. The following results are
obtained:

Migrate (component C, server NewS) {
- deploy a copy of C on the NewS;
- locate all connectors referring C;
- make C in passive state (no incoming
calls);
- send the address of the NewS to the
localised connectors to locate the
migrated component;
- If C is with state Then {
 - Waits a t time >= max
(response time of C);
 - make a state transfer
between C and its copy;
 }
- enable all messages blocked on each
connector;
- remove C from the old server S;
}

CONTROL ENGINEERING AND APPLIED INFORMATICS 49

Table 1: Response time
Requests
Numbers

Response time
average :
without

adaptation
mechanism

Response time
average : with the

adaptation
mechanism

Increases rates

10
30
50

100
200
300
500
1000

108,71 ms
339,27 ms
526.70 ms

1129,05 ms
2154.55 ms
3250.64 ms
5417.43 ms

11176.91 ms

138,80 ms
407.71 ms
614.36 ms

1315.55 ms
2506.02 ms
3777.05 ms
6292.61 ms

13007.83 ms

27.67 %
20,17%
16.64 %
16.51 %
16.31 %
16.19 %
16.15%
16.38 %

According to the results, we can notice that the influence of
the implementation of the adaptation mechanism is at least
stable; it induces a response time increase of about 16 %.
This increase is natural results of the use of an interpreted
code on connectors instead a compiled code which is faster in
term of execution time. We cannot say that is acceptable or
not, that depends on the nature of application if it aims the
dynamic adaptability more than performance or not. Thus
there is always a compromise to make between the benefit in
term of dynamic adaptability and the loss in term of
performance.
The second evaluation has for objective the measurements of
the adaptation duration, which is also the inactivity time,
since the communications channels are blocked during
adaptation. The adaptation duration is calculated as follow:

 Tadaptation = Trspt-wa - Trspt-na; with:

Tadaptation : adaptation duration.
Trspt-wa: response time including adaptation.
Trspt-na: response time without adaptation.

Table 2: Response time

Requests
Numbers

Response time without
adaptation

Response time
with adaptation

Adaptation
duration

500
600
700
800

7375.2 ms
8551,33 ms
9815,4 ms
11051 ms

10780,66 ms
11685,16 ms
13053.2 ms

14589.75 ms

3405,46 ms
3133.83 ms
3237.8 ms

3538.75 ms
Average 3328.96 ms

According to the results shown in table 2, we observe that the
adaptation duration average is greater than 3 seconds. This
time is very large compared to the response time of only one
request which is approximately 14 ms (response time/a
number of requests). This value presents an unacceptable
inactivity rate, especially if we manipulate a highly critical or
real time application. It’s important to note that this
experimentation is made without including the state transfer
mechanism, which is not yet implemented in the system.
Such mechanism increases more the adaptation duration.

The last experimentation aims to evaluate the ability of the
system to preserve the communication channels during
adaptations. For this reason, we have implemented on the
client component a mechanism that enables to counting the
number of the right responses obtained from the server
component. We repeat the previous experience, which
consists to make adaptation during requests execution.

Table 3: Altered messages rate.

Requests Altered messages
500
600
700
800

0%
0%
0%
0%

The obtained results show that the rate of altered messages
during an adaptation is 0%, thanks to the calls
blocking/unblocking mechanism implemented on the
connectors.

According to the previous results, we can say that the
proposed approach is well adapted for the applications that
haven't a frequent adaptation rate and which prefer
performances losses to data loss.

5. CONCLUSION

In the paper we have presented an architecture based
approach for dynamic adaptation in component-based
software. The major advantage of the proposed system is the
separation of the adaptation mechanism from the executed
application. This makes the system independent from
particular component models and platforms. The
implementation for a specific component model (Enterprise
Java Bean, CCM (Corba Component Model: OMG) or Dot
Net: Microsoft) is made through little conveniences (in
connectors’ level) without changes in the main adaptation
concepts. More advantages are the well communications
channels preserving and the adaptation reliability.
However the evaluation of the proposed solution has revealed
some limits, for example the long adaptation duration makes
our solution adapted only for special kinds of applications.
Others limits like the non support of simultaneous
adaptations, leads us to plan the following prospects:

• The improvement of the adaptation system in terms
of performances;

• To extend the MAS by introducing for example
several adaptation agents and ensuring their
collaboration to achieve more than adaptation at the
same time.

In long term, we plan to continue our experiments with
others components models like CCM and DotNet, and
study the possibilities to extend our adaptation solution
to be supported by other kinds of applications like web
services. Also others aspects such as what kind of
system were this applied to? What did the architecture
look like before adaptation? What extent did the
adaptation reach? will be developed and evaluated.

50 CONTROL ENGINEERING AND APPLIED INFORMATICS

 REFERENCES

Aksit, M. and Choukair, Z. (2003). Dynamic, adaptive and
reconfigurable systems overview and prospective vision.
ICDCSW’03 0-7695-1921-0/03 IEEE Computer Society.

Belabed, A. and Chouarfia. A. (2008). Une approche orientée
aspect pour l’adaptation dynamique des applications à
base de composants. COSI’08. Tizi-Ouzou, Algérie.

Brinkschulte, U., Schneider, E. and Picioroag, F. (2005).
Dynamic real-time reconfiguration in distributed systems:
Timing issues and solutions. Proceedings of the Eighth
IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing. (ISORC’05), 0-7695-2356-
0/05.

Brinkschulte, U., Bechina, A., Picioroag, F. and Schneider, E.
(2002). Distributed real-time computing for
microcontrollers – The OSA+ Approach . ISORC,
Washington D.C.

Bordeie, X. (2007). Aborder Groovy, langage de script pour
Java, JDN Développeurs.

Boanac, D. (2007). Scripting in Java languages, Frameworks
and patterns. Addison Wesley, ISBN 0321-32193-6.

Chiba, S. and Nishizawa, M. (2003). An easy to use toolkit
for efficient Java bytecode translators. Proc of 2nd
International Conference on Generative Programming and
Component Engineering (GPCE’03), LNCS 2830, pp
364-376, Springer Verlag.

Dahm, M. (1999). Byte code engineering with the JavaClass
API. Technical Report B-17-98, Institut fur Informatik,
Freie Universitat Berlin January.

Dashofy, E.M., Hoek, A.v.d., and Richard, N.T. (2001). A
highly-extensible, XML-based architecture description
language. In Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA 2001).
Amsterdam.

Georgas, J.C., Richard N. T. (2004). Towards a knowledge-
based approach to architectural adaptation management.
WOSS'04, Newport Beach, CA, USA.

Huang, G., Mei, H., and Yang, F. (2006). Runtime recovery
and manipulation of software architecture of component-
based systems. Automated Software Eng. pp 257-281.

Kell, S. (2007). Rethinking software connectors.
SYANCO‘07 Dubrovnik, Croatia.

Ketfi, A. (2004). Une approche générique pour la
reconfiguration dynamique des applications à base de
composants logiciels. Thèse de doctorat de l’Université
Joseph Fourier de Grenoble France.

Kiczales, G., Lamping, J. and Mendhekar, A. (1997). Aspect-
oriented programming. In Proceedings of the ECOOP'97.

Medidovic, N. and Taylor, R.N. (2000). A classification and
comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, Vol. 26, N°.

Oreizy, P., Medidovic, N., Taylor, R.N. (1998). Architecture-
based runtime software evolution. ICSE '98. Kyoto, Japan.

Pinto, M., Fuentes, L. and Troya, J.M. (2003). DAOP-ADL:
An architecture description language for dynamic
component and aspect-based development. GPCE 2003,
LNCS 2830. (C) Springer-Verlag Berlin Heidelberg.

Plasil, F., Balek, D., Janecek, R. (1997). DCUP: Dynamic
component updating in Java/CORBA Environment. Tech.
Report No. 97/10, Dep. Of SW Engineering, Charles
University.

Qun Yang, Xianchun Yang and Manwu Xu (2006) A mobile
agent approach to dynamic architecture-based software
adaptation. ACM SIGSOFT Software Engineering Notes,
Vol. 31 N°. 3.

Samuel, K., Obrst, L., Stoutenburg, S. and Fox, K. (2006).
Applying Prolog to semantic Web Ontologies & Rules
moving toward description logic programs. ALPW.

Szyperski, C. (1998). Component software: beyond object
oriented programming. Editor Addison- Wesley & ACM
Press.

