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Abstract — Component-based development has become a commonly used technique for building 
complex software systems by assembling a set of existing components. In general adapting an application 
means stopping the application and restarting it after the adaptation. This approach is not adapted for a 
large classes of software systems in which continuous availability is a critical requirement, hence the need 
of adapting the application at run-time. In the paper we present an architecture based approach for 
dynamic adaptation in component-based software. We are interested in the dynamic adaptation 
independently of the nature of the system to be adapted. Also In the case, we use an agent based system to 
perform the adaptation. The agent system is guided by an architectural description of the adapted 
application.  The adaptation mechanism is implemented in the connectors using the flexibility offered by 
the Java Scripting programming technique.       
Key words: components, dynamic adaptation, multi agent system, architecture description, configuration 

 

1. INTRODUCTION 

The development of large software by assembling existing 
components is the objective of the components-based 
development (Szyperski, 1998). The permanent evolution of 
user’s needs and the fast changing in the execution 
environments make the software adaptation a primordial task. 
In components-based development paradigm, an adaptation 
can address (Aksit and Choukair, 2003):  Architectural 
changes, geographical changes, Interface modification, or 
implementation adaptation. The architectural changes consist 
of adding or removing components or modifying connections 
among them. The geographical changes correspond to the 
migration of components from a site to another one. The 
interface modification consists of changing the interface of a 
component to make it more compliant to the caller’s 
expectations, while the implementation adaptation affects the 
internals implementation of components without changing 
interfaces.   

Traditionally, an application is stopped to be adapted. This 
approach is not suitable for critical systems that have to be 
non-stop and highly available like bank, internet or 
telecommunication services. In these kinds of systems the 
adaptation must take place at run-time and the application 
should not be entirely stopped. Unfortunately, realize such 
adaptation is not trivial; there are several conditions and 
constraints to be verified, and many problems to overcome. 
Some important problems to be considered to make a 
dynamic update are (Aksit and Choukair, 2003):     

• Maintaining application consistency: states of the 
components must not be affected by changes in the 
application architecture. 

 
• Preserving bindings of the components: Bindings 

have to be preserved by redirecting the calls to new 
components and managing transient states. 

• Initializing new components: New components must 
be initialized with adequate internal state according 
to the former component.  

• Preserving communication channels by avoiding 
message loss, duplication or excessive delays. 

In the paper, we describe our approach to achieve dynamic 
adaptation of components-based software applications. The 
idea is to introduce between two components a connector 
(unit of interaction) (Kell, 2007) that intercept and redirect 
inter components communications. The adaptation is made 
through the adaptation system by acting on connectors. The 
adaptation system is not integrated in the application, it is an 
independent system composed of software agents, whose role 
is to perform and supervise the adaptation operations. The 
agents system is guided by a knowledge base, which 
contains: 
 i) a set of rules that condition the adaptation launching, 
 ii) the architecture description of the adapted application, 
that enables the adaptation system to ensure the validity and 
the coherence of adaptation.   

The paper is structured as follows: section 2 presents 
related works to the dynamic adaptation. Section 3 describes 
the proposed solution to achieve a dynamic update of 
components-based software applications. The 
implementation details and some measurements relative to 
our solution are given in section 4. Section 5 concludes and 
presents some perspectives.  
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2. RELATED WORKS 

Several works dealt with dynamic adaptation problems, 
hence the emergence of several approaches. 

In the model driven approach, the dynamic adaptation is 
based on a components model that designed to support this 
kind of adaptation. DCUP (Dynamic Component Updating) 
(Plasil et al., 1997) is an example of this approach. In DCUP 
the component is divided into two parts: permanent part and 
replaceable part. Adapting a component means replacing its 
replaceable part by a new version at run-time.  

In The reflexive approach, an application has an abstract 
level (meta-level) that reify the real system. The adaptation is 
made first on the meta-level, after that, the changes are 
reflected on the executed applications thanks to the causal 
connection between the meta-level and the real system. An 
example of this system is DYVA (Ketfi,2004): a reflexive 
framework for dynamic reconfiguration of components-based 
applications. The framework is decomposed in two main 
parts:  The base-level represents the concrete application that 
provides the expected functionalities and its execution 
environment and the reconfiguration machine that contains 

i) the different operational modules responsible for 
achieving the reconfiguration, 

ii)  ii) the meta-level which represents the 
reification of the concrete application.  

The architectural approach uses explicit description of the 
executed application through specific languages: the 
Architecture Description Language: ADLs (Medidovic and 
Taylor, 2000). An ADL describes an application in term of 
components, connectors and connection among them. The 
adaptation in this approach is verified and validated in the 
architectural level before to be applied on the application. 
This approach is used by (Qun et al., 2006); the adaptation 
takes advantage of both meta-architecture and the mobile 
agents. It uses an architectural model to guarantee the safety 
of the reconfiguration, while uses mobile agents to automate 
the adaptation process in a flexible way. 

In the flexible middleware approach, the adaptation is 
delegated to the execution platform. In such system the 
dynamic adaptation is looked like a non factional properties 
offered by the middleware, like security and transactions 
management. In (Brinkschulte et al., 2005), the adaptation   is 
based on the real time middleware OSA+ (Brinkschulte et al., 
2002). The objective is to be able to reconfigure services 
during run-time, with a predictable and predefined blackout 
time (the time where the system does not react due to the 
reconfiguration). 

The aspect oriented approach is based on the aspect oriented 
programming technique (Kiczales et al., 1997), in particular the 
dynamic aspect, which involve plug and unplug of aspects 
without stopping, and restarting a running system. DAOP 
(Pinto et al., 2003): Dynamic Aspect-Oriented Platform is an 
example of such system. DAOP provides a composition 
mechanism that plugs aspects into components dynamically 
at runtime. The composition between components and 

aspects is established during runtime interaction and is 
governed by a set of plug-compatibility rules in order to 
guarantee their correct interoperation. 

Authors in (Oreizy et al., 1998) describe ArchStudio, a tool 
that implements an architecture-based approach to runtime 
software evolution. The approach is based on an explicit 
architectural model, which is deployed with the system and 
used as a basis for change. The connectors in the system are 
first class elements that have an important role to support 
run-time changes. An imperative language is used for 
modifying architectures. The tool supports adding, removing 
and replacing components and connectors, and changing the 
architectural topology. On the same axis, (Georgas and 
Richard, 2004) presents an architecture-centric approach to 
self-adaptive software applied to systems constructed using 
independent components interconnected through first-class 
connectors, both explicitly modelled using architectural 
descriptions. The architectural models are used as the basis 
for the decomposition. The architectural models 
representation is make using xADL 2.0 language (Dashofy et 
al., 2001): a highly extensible, XML-based ADL. An 
extension of this language is also used to define the structure 
of observations, responses, and adaptation policies. 

In [Qun et al., 2006), the adaptation takes advantage of both 
meta-architecture and the mobile agents. It uses an 
architectural model to guarantee the safety of the 
reconfiguration, while uses mobile agents to automate the 
adaptation process in a flexible way. 

(Huang et al., 2006) present an approach to recover software 
architecture from component based systems at runtime and 
changing the runtime systems via manipulating the recovered 
software architecture. As soon as software architecture is 
recovered, the runtime system can be observed, reasoned and 
adapted through its architecture views. The approach 
supports the addition, deletion and replacement of the 
components and connectors.  

3. PROPOSED SYSTEM 

The architecture of the proposed system (Belabed and 
Chouarfia, 2008) consists of two main parts: the Knowledge 
Base and the Multi Agent System SMA in the Fig 1: 

3.1 The Knowledge Base: KB 

The KB is composed of two parts: the adaptation policies, a 
set of rules, which defines the adaptation policy, and the 
application architecture description. The formalism used In 
the database is based on the logic of predicates with Prolog 
based implementation; the choice of this formalism is 
justified by: 

• The important role that has the architecture 
description in the adaptation mechanisms involves a 
large number of inferences makes on the 
architecture description to guide the adaptation. 
Such mechanism is provided in Prolog. 

• Prolog can be easily used as descriptive language. A 
predicate which presenting a fact is similar to an 
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XML tag, for example:  < tag > value < tag >, can be 
written in Prolog as tag (value). More, Prolog is 
used in several projects to represent more complex 
structures such as ontology (Samuel et al., 2006), 
which motivated us to use it as an architecture 
description language. 

• The existing tools facilitate the use and the 
integration of Prolog formalism with other 
languages (such the java/Prolog interface), this 
avoid us to reprogramming the necessary inferences 
mechanisms needed in our approach.   

 
Fig 1: Proposed architecture 

3.1.1 The adaptation policy  

This base contains a set of rules that condition the adaptation 
triggering according to the values of certain environment 
variables.  The rules are in the following form:  

       If   <event> Then Action    

An event can be a significant change in one of the 
environment variable like the used memory, network band-
width,).The following example shows the form of rule that 
trigger an adaptation (replacement of component in the 
example) if the rate of the used memory exceeds the value 
“val”. 

 Event (’t_Memo’, Value):- Value > val, Replace (compo1, 
compo2).  
The predicate “Event” has two parameters: the first specifies 
the type of context concerned by the event (the rate of the 
used memory); the second specifies the value of the event. 
The action "Replace (compo1, compo2)" will be triggered 
only if the condition "Value > val" is true. 

3.1.2 Architecture description 
This base contains:  

• The detailed specification of each component of the 
base of components in term of provided and 
required interfaces and operations of each interface.  

• The architecture description of the executed 
application (components and interactions). 

• The Inferences rules, which used to deduce the 
correspondences and compatibilities between 
components. 

• A set of rules is used to ensure the coherence and the 
validity of the adaptation. 

The detailed specification of the proposed formalism is out 
the scope of this paper. 

3.2 Multi Agent System MAS 

Using MAS is justified by two main reasons:  
• To adapt a distributed application requires using a 

tool which was acquired in MAS.  
• The design of MAS is in mature phase, we can use 

an MAS platform qualified efficient and stable. In 
addition, the qualities of MAS such as 
communication, flexibility, scalability and mobility 
facilitate the tasks of adaptation. 

The MAS contains two agents: an adaptation agent A-A  and 
an environment agents E-A  (Fig 2). 

 
Fig 2: Multi Agent System class hierarchy 

1.  Adaptation agent A-A : The role of this agent is 
• Takes decisions about the adaptation triggering, 

according to the E-A notifications. The A-A uses the 
adaptation policy rules to accomplish this task. 

• Achieves the adaptation according to the actions 
deduced     from the adaptation policy rules. The 
adaptation operations are guided by the architecture 
description base. 

• Modifies the architecture description base after each 
operation according to the realized changes on the 
application level. 

The A-A achieves the above operations through three 
components: the rules manager, the adaptation manager and 
the architecture manager. 
The rules manager is responsible for the manipulation of the 
adaptation policy rules, if a decision to adapt is taken, the 
rules manager informs the adaptation manager to perform the 
operation. This operation is guided by the architecture 
manager whose provide the necessaries inferences from the 
architecture description base. The architecture manager is 
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also responsible to reflect the changes made on the 
application on the architectural level. This operation ensures 
the matching between the executed application and the 
description of this application. 
 
2. The Environment Agents E-A: The role is the control of 
 the execution environment and the notification of the A-A   
 if significant any changes appears in the environment  
  variables (Belabed and Chouarfia, 2008).  

3.3 Adaptation principles 

The idea consists to associate for each component a 
connector, which implements its required interfaces. The 
inter components calls are done through these connectors.  
The adaptation mechanism acts directly on connectors to 
achieve the adaptation (Fig 3).  Each connector implements 
the necessaries mechanisms (for calls interception and 
redirection) that allow the adaptation agent to perform the 
update. 

 

 
Fig 3: Adaptation principle. 

Using Fig 3, we explain the structure of connectors in our 
approach. In the example, we assume that C1 component  
interacts with C2 component trough a connector in 
synchronous communication mode.  
The C1 component requires interface I2, which the 
specification is: 

Interface I1 { 

Result1 M1 (param1.1, param1.2); 
             } 
While "Result1" is the return of method M1, param1.1 and 
param1.2 are the input parameters. 
The C2 component provides the interface I2 which 
specification is:  

Interface I2 { 

Result2 M2 (param2.1, param2.2); 

              } 

The basic structure for the connector is as follows: 
Connector implement I1 { 
Result1 M1 (param1.1, param1.2) 

{  
Return execute (‘Script’); 
} 
                        } 
            
The script code 

 
 
 
 
 
 
 
 
 
 

Listing 1: Script code 

The body of method M1 of connector is implemented with a 
script that makes the call to method M2 of C2 component, 
with the necessary parameters and return types casting. The 
replacement of the C2 component  is made by changing the 
executed script in the body of connector’s method (M1 in the 
example).   
The system is designed to support the addition, removal, 
replacement and migration (change of the deployment server) 
of components. The A-A operates according to an adaptation 
plan, this is a set of basic algorithms specific to each 
operation (ex: addition or removal operation). 

Before any operation, the components directly implied in the 
adaptation operation must to be in a passive state (they not 
accept incoming calls), this is possible thanks to the 
connectors that can queue calls to a C component during 
adaptation. 

A dynamic connection between two components C1 and C2 
is to put in interaction between these two components 
through two methods (ports) M1 and M2. M1 is a required 
method for C1 and M2 is a provided method by C2, the 
connection is done by the A-A while indicating to the 
connector associated with C1 the name of the C2 component  
and the method to be called M2. A phase of mapping 
between the two methods is necessary before establishing 
connection.  The correspondence concerns the parameters of 
call, their order and the type of return of each method.  The 
mapping is done manually by the administrator of the 
application using the architecture description.  The 
administrator must provide the methods of calculation (script 
code) for conversion between the types of the parameters of 
call and the type of return of each method.  The methods are 
transmitted then to the connector responsible for the 
connection between the two components. To make 
conversions in an automatic way after connection, the 
administrator must also manage the semantic correspondence 
between the methods to be connected to avoid the semantic 
abuses use.   

The dynamic disconnection of a component consists in 
making it passive, i.e. prohibit any incoming call towards this 
component.   

// type casting of parameters call  
Param31= castingToPramr2.1(param1.1) ; 
Param32= castingToPramr2.2 (param1.2) ; 
// call of C2 component’s M2 method 
Result3 = C2.M2 (Param3.1, Param3.2); 
// Result type casting 
Return cast_to_Resul (Resul3); 
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3.3.1 Component Addition   
Add a new component to an application corresponds to 
connecting each component port (interfaces operations) with 
the corresponding port of the application components. So an 
addition is a succession of connections. The addition is done 
as follow:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           Listing 2:   Component addition code 

3.3.2 Component Removal 

A component is removed only if it does not refer to any 
component and no component refers to him, this condition 
can be verified at the architecture level when the component 
is not implied in any interaction rule. The suppression 
algorithm is defined as follow:      

 

         Listing 3:  Component removal code 

3.3.3 Component Replacement 

Fig 4 shows the replacement of the C3 component by the 
NewC3 component. In the example, the C3 component is in 
relation with two components C1 and C2 through provided 
interfaces and in relation with C4 through a required interface. 
The adaptation consists then to replace the C3 component by 
the NewC3 component.  Before starting the replacement 

operation the two components must be passed in  
correspondence phase. 
 

 
Fig 4: Component replacement. 

After corresponding phase, the adaptation agent achieve the 
replacement according to the following adaptation plan: 

1. Referring to the architecture description, the adaptation 
agent localises all connectors in relation (in provided 
interfaces) with the component to be replacing (« con 
1.3 » and « con 2.3 »). 

2. The adaptation agent puts C3 in passive state by ordering 
to each localised connector to blocking all messages 
towards it. 

3. The adaptation agent deploys the new component. 
4. The adaptation agent sends the necessaries information to 

each connector to make the redirection of the calls towards 
the new component. 

5. The adaptation agent connects the new component on 
provided interfaces with the C4 component, this operation 
implies the deployment of the connector associated to the 
NewC3 component. 

6. If the component to be replaced is with state, the adaptation 
agent makes a state transfer between the two components. 

7. After a time t corresponding to the maximum of the 
response times of the component to be replacing, the 
adaptation agent deactivates this last, activates the new 
component by unblocking the blocked messages and 
announces the end of the adaptation. This mechanism is 
used to make sure that the C3 component has finished all in 
progress treatments before its suppression. 

3.3.4 Component Migration 

The component migration consists in moving it from an 
application server S to another server NewS. The new server 
must provide an ideal execution environment for the moved 
component, i.e. it must have all the resources whose 
component needs. The migration of a C component towards a 
NewS is made by the A-A according to the following 
algorithm: 

C1 

Con 
1.3 

Con 
2.3 C2 

New
C3 Con 

3.4 

C4 
 

C3 
Con 
3.4 

remove (component C) { 
Check the absence of reference to or 
from C;  

  If OK Then remove C; 
  else impossible to remove C; }  

 

Add (component C) { 

For each port m of c { 

- Identify all component Ci and ports mi 
to be connected with the port m of 
component C; 

- For each couple (Ci, mi) { 

   make the correspondences with the 
couple (C,m) ;  

If not correspondence Then cancel 
addition; }} 

- establish the add at the architectural 
level;  

- verify the adaptation coherence after 
addition (in architectural level) 

If not coherence  

     Then {cancel addition;  

           Cancel the modifications on 
architectural level;   } 
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Listing 4:  Migration component code 

3.4 Adaptation coherence 

The adaptation coherence is ensured at the architectural level. 
Before establishing an adaptation at the applicative level, the 
architectural level checks the applicative level.  The checking 
of coherence is done through a set of rules incorporated in the 
architecture description base. Any adaptation considered 
incoherent in this level is cancelled.  The following section 
describes the solutions used in our approach to ensure a 
coherence and adaptation safety.   

1.  Preserving communication channels:  the 
communication channels are preserved through a 
mechanism implemented in each connector, this 
mechanism blocks the messages (put them in queue) 
during adaptation. The end of adaptation unblocks all 
messages on standby, and the application continues its 
execution without messages lost.   

2.  Coherence of the interactions:   the coherence of the 
interactions between components is ensured through a 
manual phase of mapping between ports of 
components of the components to connect. This phase 
is performed using information provided for each port 
in architecture description base.  This information 
allows to taking into account the semantics of use of 
each port and component, which avoids any conflict of 
call or use.   

3. Conflicts between adaptations:  if badly managed can 
lead to a total crash of application, in the fact that an 
adaptation can cancel the effect of another or introduce 
contradictory modifications. This type of inconsistency 
is avoided in our approach by allowing one adaptation 
at the same time, this can lead to degradation in the 
performances of the adaptation system, but it is a cost  

to be paid with the profit of a safe adaptation.  If an 
adaptation is in progress and a new need for adaptation 
appears, this second is put in a queue until the end of 
the first adaptation.  The adaptation queue is managed 
so as to eliminate a contradictory adaptations, for 
example, if an adaptation need due to an increase in 
one of environment parameters is in the queue, if 
another adaptation is needed with the reduction of the 
same parameter, the first adaptation is eliminated from 
the queue.   

4. The state transfer:  we are not introduce a specific 
solution in our  approach, we adopt the solution 
proposed by (Ketfi, 2004),  this solution is specific to 
the components written in java, it  consists to pass 
each component before its deployment by an  
instrumentation phase using a byte codes manipulation  
tools such as Javassist [Chiba and Nishizawa, 2003) or 
BECEL (Dahm, 1999) . In this phase we introspect the 
component implementation then selecting the 
attributes which constitute the state of component, we 
add than the operations getState() and setState() in the 
component implementation. This mechanism increases 
the complexity of the operation of adaptation, for 
example, in component replacement it is also 
necessary to make a correspondence between the two 
components to see whether it is possible to make a 
state transfer, if the mapping fails, the replacement 
will be then impossible.   

4. IMPLEMENTATION AND EVALUATION 

A preliminary implementation of the system is done for the 
EJB (Enterprise Java Bean: Sun Micro Systems) component 
model. For implementing the interception and redirection 
mechanisms in the connectors, we have used the reflexives 
properties of Java language and the Java scripting 
programming technique (Bosanac, 2007). This technique 
consists to execute a script code in a java class. The script 
origin can be a file or other application. This technique 
enables to the adaptation agent to change connector’s code 
dynamically. The script language used in the implementation 
is Groovy (Bordeie, (2007). 
To evaluate the proposed system, the test application runs on 
a PC with PIV 1.7MHz, 256M SDRAM. It consists of a 
component client sending a string and component server 
receiving this string, printing it in screen and returning it 
back to the client. 
The evaluation test is made by comparing two versions of the 
same application; one implements the adaptation mechanism 
on its connectors, the other without this mechanism.  

First we have tested the adaptation mechanism influence on 
the application response time. The objective is to calculate 
the response time increase in the version which implements 
the adaptation mechanism according to the number of 
requests emitted by the client. The following results are 
obtained:  

 

Migrate (component C, server NewS) { 
-  deploy a copy of C on the NewS;  
- locate all connectors referring C; 
- make C in passive state (no incoming 
calls); 
- send the address of the NewS to the 
localised connectors to locate the 
migrated component;   
- If C is with state Then { 
          - Waits a t time >= max 
(response time of C); 
          - make a state transfer 
between C and its copy;  
                         } 
- enable all messages blocked on each 
connector; 
- remove C from the old server S;     
} 
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Table 1: Response time  
Requests 
Numbers  

Response time 
average : 
without  

adaptation 
mechanism  

Response time 
average : with the  

adaptation 
mechanism 

Increases rates  

10 
30 
50 

100 
200 
300 
500 
1000 

108,71 ms 
339,27 ms 
526.70 ms 

1129,05 ms  
2154.55 ms 
3250.64 ms 
5417.43 ms 

11176.91 ms 

138,80 ms 
407.71 ms 
614.36 ms  

1315.55 ms 
2506.02 ms 
3777.05 ms 
6292.61 ms 

13007.83 ms 

27.67 % 
20,17% 
16.64 % 
16.51 % 
16.31 % 
16.19 % 
16.15% 
16.38 % 

 
According to the results, we can notice that the influence of 
the implementation of the adaptation mechanism is at least 
stable; it induces a response time increase of about 16 %. 
This increase is natural results of the use of an interpreted 
code on connectors instead a compiled code which is faster in 
term of execution time. We cannot say that is acceptable or 
not, that depends on the nature of application if it aims the 
dynamic adaptability more than performance or not. Thus 
there is always a compromise to make between the benefit in 
term of dynamic adaptability and the loss in term of 
performance. 
The second evaluation has for objective the measurements of 
the adaptation duration, which is also the inactivity time, 
since the communications channels are blocked during 
adaptation. The adaptation duration is calculated as follow:            

            
     Tadaptation = Trspt-wa - Trspt-na; with:  

Tadaptation : adaptation duration. 
Trspt-wa: response time including adaptation.  
Trspt-na: response time without adaptation. 

Table 2: Response time  

Requests 
Numbers 

Response time without 
adaptation 

Response time 
with adaptation 

Adaptation 
duration 

500 
600 
700 
800 

7375.2 ms 
8551,33 ms 
9815,4 ms 
11051 ms  

10780,66 ms 
11685,16 ms  
13053.2 ms  

14589.75 ms 

3405,46 ms 
3133.83 ms 
3237.8 ms  

3538.75 ms  
Average  3328.96 ms 

According to the results shown in table 2, we observe that the 
adaptation duration average is greater than 3 seconds. This 
time is very large compared to the response time of only one 
request which is approximately 14 ms (response time/a 
number of requests). This value presents an unacceptable 
inactivity rate, especially if we manipulate a highly critical or 
real time application. It’s important to note that this 
experimentation is made without including the state transfer 
mechanism, which is not yet implemented in the system. 
Such mechanism increases more the adaptation duration.     

The last experimentation aims to evaluate the ability of the 
system to preserve the communication channels during 
adaptations. For this reason, we have implemented on the 
client component a mechanism that enables to counting the 
number of the right responses obtained from the server 
component. We repeat the previous experience, which 
consists to make adaptation during requests execution.  

Table 3: Altered messages rate. 

Requests  Altered messages  
500 
600 
700 
800 

0% 
0% 
0% 
0% 

 

The obtained results show that the rate of altered messages 
during an adaptation is 0%, thanks to the calls 
blocking/unblocking mechanism implemented on the 
connectors. 

According to the previous results, we can say that the 
proposed approach is well adapted for the applications that 
haven't a frequent adaptation rate and which prefer 
performances losses to data loss. 

5. CONCLUSION 

In the paper we have presented an architecture based 
approach for dynamic adaptation in component-based 
software. The major advantage of the proposed system is the 
separation of the adaptation mechanism from the executed 
application. This makes the system independent from 
particular component models and platforms. The 
implementation for a specific component model (Enterprise 
Java Bean, CCM (Corba Component Model: OMG) or Dot 
Net: Microsoft) is made through little conveniences (in 
connectors’ level) without changes in the main adaptation 
concepts. More advantages are the well communications 
channels preserving and the adaptation reliability.         
However the evaluation of the proposed solution has revealed 
some limits, for example the long adaptation duration makes 
our solution adapted only for special kinds of applications. 
Others limits like the non support of simultaneous 
adaptations, leads us to plan the following prospects: 

• The improvement of the adaptation system in terms 
of performances; 

• To extend the MAS by introducing for example 
several adaptation agents and ensuring their 
collaboration to achieve more than adaptation at the 
same time.   

In long term, we plan to continue our experiments with 
others components models like CCM and DotNet, and 
study the possibilities to extend our adaptation solution 
to be supported by other kinds of applications like web 
services.  Also others aspects such as what kind of 
system were this applied to? What did the architecture 
look like before adaptation? What extent did the 
adaptation reach? will be developed and evaluated. 
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