
CEAI, Vol.18, No.1 pp. 30-41, 2016 Printed in Romania

Analyzing Deferred Rendering Techniques

Alexandru-Lucian Petrescu, Florica Moldoveanu, Victor Asavei, Alin Moldoveanu

Computer Science and Engineering Department, University POLITEHNICA of Bucharest, Bucharest, 0600042, Romania
(e-mail: alexandru.petrescu@cti.pub.ro, {florica.moldoveanu, victor.asavei, alin.moldoveanu}@cs.pub.ro)

Abstract: In this article various deferred rendering algorithms are investigated and a classification that
formalizes the comparison between these popular rendering techniques is introduced. This classification
consists of measuring functions that can be used to determine the expected algorithm performance in
various situations. Multiple analysis spaces are defined that better express the strengths and weaknesses
of each algorithm. Given the abundance of deferred rendering methods and the performance tradeoffs
implied by different hardware targets, rendered objects complexity and light setup complexity, our
framework makes choosing or modifying an algorithm out of this collection a simpler process. The
following spaces are used for algorithm examination and comparison: GPU commands, processing cost,
allocated memory and expected bandwidth consumption. Furthermore, the analysis spaces are
independent of the illumination model and are suitable for a decoupled examination, in which each stage
of rendering process is usually executed at a different sampling rate.

Keywords: computer graphics, real-time rendering, deferred, decoupled, analysis

1. INTRODUCTION

The light-object intersection problem is one with a high
complexity for real time rendering, because it is traditionally
computed in ܱሺ݈݄݅݃ݏݐ	 ൈ ሻ complexity (Kircher etݏݐ݆ܾܿ݁
al., 2009).

The deferred algorithms split the rendering equation used to
evaluate each light-object interaction into multiple evaluation
stages that are both cache friendly due to data locality and
equivalent to the initial rendering equation from the
standpoint of the final result. Through this division, the
family of deferred algorithms solves the complexity problem
by lowering it to ܱሺ݈݄݅݃ݏݐ ሻ, with the notableݏݐ݆ܾܿ݁
mention that it is only applicable when shadows are not
computed for all the lights. Nonetheless, there are
workarounds for solving shadows for many lights (Olsson et
al., 2014; Ritschel et al., 2008).

The equation separation is performed through the use of
explicit or implicit intersection acceleration structures. In the
case of the explicit intersection acceleration structures, one-
level quad trees, buckets and tridimensional grids have been
used. From an implicit intersection acceleration structure
standpoint the raster works just as a bi-dimensional grid.

The order of intersection differs between algorithms. Some
intersect the set of objects with the set of lights, while others
intersect the set of lights with the set of objects. Even if this
operation is mathematically commutative each approach has
different optimization structures and strategies.
Independently of the direction of the intersection between the
scene lights set and the scene objects set the first operand is
used to fill the acceleration structure and the second operand
just queries the first operand through the acceleration
structure and then stores the results of the evaluated equation
part in the correct pixel. At the end of the process, the final

illumination result is stored in each pixel and the pixels are
sent to be displayed.

Furthermore, decoupled (Ragan-Kelley et al., 2011, Liktor et
al., 2012) algorithms can also be considered deferred
algorithms. In decoupled algorithms the principle of
computation separation is taken to its logical extreme where
each rendering sub-process is sampled and evaluated at a
separate frequency. This is extremely effective in rendering
processes where there are large frequency differences
between stages, like the REYES (Cook et al., 1988) pipeline.

The decoupled rendering algorithm class becomes even more
important when techniques such as per frame visibility
caches or illumination caches are used. On the other hand,
decoupled techniques require state of the art hardware for real
time rendering and this impediment makes their usage in a
real world real-time scenario rare for the moment.

Additionally, some algorithms that evaluate the scattering of
light through transparent media are also exhibiting deferred
and decoupled principles, the largest category being Order
Independent Transparency algorithms.

The deferred algorithms also offer other advantages such as
the separation of scene objects and scene lights management
and increased memory access coherency. They also provide
excellent modularity for software architectures such as
rendering engines where they can easily be used together
with different global illumination (GI) algorithms (Tokuyoshi
et al., 2012; Davidovic et al., 2012). While deferred
algorithms do not offer the same visual quality as the global
illumination algorithms, they are much faster, because global
illumination algorithms and their acceleration structures are
optimized for much more complicated light processes and
interactions. Global illumination usually employs a form of
hierarchical traversal such as a BVH tree, a Kd-tree or any

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

other variant of acceleration structure, while deferred
algorithms use the raster which acts as a hierarchical coherent
hash tree, binning objects through a spatial hash function.

Thus, compared to the global illumination family of
algorithms the deferred family is much faster due to much
lower processing costs and due to superior memory
coherency, even if many coherency enhancing methods were
introduced for global illumination algorithms such as path
tracing or photon mapping. Moreover, the complexity of
deferred methods is lighter, because the hierarchical early Z
rejection algorithm leads to a complexity of ܱሺܿݐ݊ܽݐݏ݊ሻ
with inexact Z sorting, compared to the natural complexity
ܱሺlog ݊ሻ of GI methods. In practical applications the constant
is decidedly small and the difference of performance only
increases when using multiple samples per pixel.

Because of all these reasons, the deferred and decoupled
algorithms will continue to see plenty of use and choosing the
correct algorithm for a specific problem will lead to some
difficult choices. In order to ease such choices and to provide
a way of estimating expected algorithm performance, a
measuring and analysis method is proposed, that formalizes
the comparison between deferred algorithms. Different
analysis spaces are introduced, such as the GPU commands,
processing cost, allocated memory and expected bandwidth
consumption, which greatly help in establishing which
algorithm would be better suited for a specific task.

2. STATE OF THE ART

The deferred rendering technique was introduced by (Deering
et al., 1988), although back then the authors didn’t use the
term “deferred” to describe their method. The use of the
Geometry Buffer (G - buffer) was as the support for an
intermediate processing stage in a rendering pipeline which
used 2D operations to handle discontinuities and to enhance
the final image’s edges and contour lines. Because of the
improved complexity, the decoupling of scene and light
management and the elegance of implementation, the
deferred techniques have evolved into some of the most used
algorithms in real-time rendering (Shishkovtsov, 2005;
Koonce, 2007).

The deferred algorithms decouple the processes of
illumination evaluation and object visibility determination
through the use of an implicit or an explicit acceleration
structure. Thus, these processes can run at different sampling
frequencies, although the shading samples and the visibility
samples still run at coupled frequencies. If hardware
multisampling (MSAA) (Jimenez et al., 2011) is used to
improve the sampling frequency of the visibility
determination process, in order to maintain equal sampling
frequencies, the intermediate geometry buffers will need to
have sufficient space to store all the results from the visibility
determination stage. Therefore, the decoupling of visibility
determination and light evaluation leads to an increase in
memory use which is proportional to the increase in sampling
frequency of the visibility determination stage (Mara et al.,
2013; Thibieroz, 2009) .

Other more intricate deferred rendering pipelines such as
decoupled sampling (Liktor et al., 2012), further complicate

the management of samples. Without decoupling sampling
rates the memory requirements would be unachievable in
real-time, on current consumer hardware.

Because of the different sampling frequencies used in the
visibility determination and in the light equation evaluation
stages, results have to be reconstructed sometimes. Therefore,
all the potential contributors per pixel must be accounted for.
This leads to a lot of erroneous intersections between lights
and objects which have to be stored and computed, but which
contribute nothing to the final image. Thus, aliasing and
noise become major efficiency problems with deferred
algorithms, not only from the traditional perspective of
visibility determination. Consequently, classic solutions such
as MSAA are not sufficient for this type of problems and
many explicit space partitioning schemes such as 2.5D
culling, tiles and clusters have been introduce to reduce these
effects.

The problem of transparency is even more complicated for
deferred algorithms because correctly sorting objects
independently of viewpoint is impossible (Salvi et al. 2011),
thus space isn’t sampled only in two dimensions but in three,
each pixel or pixel sample requiring many depth samples for
correct rendering. The memory requirements are in general
prohibitive and several algorithms exist that provide solutions
through intermediate stages or approximations (Pangerl,
2009; Kircher et al., 2009; Mara et al., 2013).

Deferred algorithms have been successfully combined with
global illumination methods (Tokuyoshi et al., 2012) with the
expected results being identical to those obtained by using
only global illumination techniques. Thus, because of the
modularity of the deferred algorithms, it is preferable to use
them in combination with global illumination methods
instead of only using the latter. The multitude of deferred
algorithms can be classified into three major categories:
 implicitly accelerated intersection of lights and objects

through the raster grid structure, which acts as an implicit
bidimensional associative array, in which the objects are
binned, and in which the objects intersecting the lights are
queried during the rasterization of lights, during the
lightpass stage.

 explicitly accelerated intersection of lights and objects
through clusters, tiles, lists, bvh trees, kd trees, etc.

 decoupled rendering with many stages each running at
distinct sampling rates, where the samples are linked
through many-to-one or many-to-many mappings in
addition to other acceleration structures.

2.1 Implicitly Accelerated

The first technique from this category is depth pre pass
rendering, in which the objects are drawn twice. In the first
stage the objects are rendered only for visibility
determination, thus materials and textures are disabled and
therefore, this rendering pass is very fast. In the second pass
the objects are rendered with the full material setups but the
early Z rejection test will discard all the resulting object
fragments that are not visible on the screen, thus evaluating
the costly illumination equation only for the shading samples
which affect the final visual result.

32 CONTROL ENGINEERING AND APPLIED INFORMATICS

In deferred rendering (Shishkovtsov, 2005) there are three
rendering passes. In the first one the objects are rendered into
the geometry buffer, which holds positions, normals, albedo
and other reflectance factors. In the second rendering pass the
lights are rendered and at each fragment generated by
rasterizing a light, the illumination equation is evaluated and
accumulated. In the final pass the accumulated illumination is
composited with the albedo. Stencil optimized deferred
rendering (Olsson et al., 2011) is an optimization of the
classic deferred rendering algorithm, specialized for
imperfect bounding light geometries. It uses shadow volumes
principles to evaluate the illumination equation only where
light support geometry affects the result.

Light pre-pass rendering (Lee, 2009), also known as deferred
lighting is a three pass technique that uses a much smaller
geometry buffer, with only depth and normal entries. In the
first pass, the light geometry buffer is filled, in the second
pass the illumination is evaluated and accumulated and in the
final pass the objects are rendered with full materials and
textures and the resulting image is composited with the
lighting from the second pass.

Transparency for a single layer can be handled with a variant
of deferred rendering that uses a screen door transparency
scheme (Pangerl, 2009). First, the opaque objects are
rendered at full resolution and then, only one out of every
four pixels is written for the transparent objects in the upper
corner of a 2x2 pixel vicinity. In the composition pass the
pixel’s transparency is evaluated by querying the entire 2x2
pixel vicinity. The previous idea is taken further by inferred
rendering (Kirscher et al., 2009), which handles transparency
by employing a complex stippling pattern and a secondary
geometry buffer. This method interlaces transparency
samples in a small number of layers, and then uses a bilateral
filter, named discontinuity sensitive filter in (Kirscher et al.,
2009), to reconstruct the final result.

Techniques that use multiple samples without any explicit
acceleration structure such as deep deferred shading (Mara et
al., 2013) or multisample anti-aliasing deferred rendering
(Thibieroz, 2009) should also be considered implicitly
accelerated. In deep deferred shading a small number of
layers is kept in many geometry buffers. The memory costs
for this method are extremely large. In multisampled anti-
aliased deferred rendering more than one sample is allocated
per pixel, but the illumination is evaluated at sample level –
not pixel level- only for the pixels where the sample coverage
mask is not complete. Thus, even if the memory is allocated
for all possible samples the bandwidth is consumed only
where sample level evaluation is necessary.

2.2 Explicitly Accelerated

Light indexed deferred rendering (Treblico, 2009) uses depth
sorted lights to obtain the closest lights for each pixel. This is
done through four binary per pixel lists implemented through
the rasterization blending mechanism. After the light index
lists are built the objects are rendered normally and, for each
pixel, the indexed lists are queried and only the closest lights
are accessed in order to evaluate the illumination equation.

This artificial mechanism is required because this algorithm
doesn’t utilize the Shader Model 5 (SM5) instruction set.

List based light indexed deferred rendering (Lauritzen, 2012)
uses the same concept as the previous algorithm but
implements the lists directly, at a per pixel level. In the
geometry rendering pass the lists are queried and the
illumination equation is evaluated with the lights which had
their indices stored in that pixel’s list.

Tiled forward rendering (Olsson et al., 2011) uses a low
resolution bidimensional grid to bin the lights in tiles. A list
is kept for each tile and if a light is rasterized over that tile, its
index is added to that tile’s list. In the object rendering pass
the computed pixels query the parent tile list in order to
obtain the light ids needed to evaluate the illumination
equation. Tiled deferred rendering (Olsson et al., 2011) uses a
geometry pass and a final pass that interpose the tiled lighting
pass in a manner similar to that of the classic deferred
rendering. While lower memory consumption and a
significantly smaller number of lights per list are the
advantages of tiled forward, tiled deferred has only one
geometry pass. Both algorithms are prone to storing non-
intersecting lights in the light index lists.

Tiled deferred with 2.5D culling (Harada, 2012), known as
Forward+, is an improvement of tiled forward rendering. By
using a depth occupancy mask per tile this algorithm culls a
large part of the non-intersecting lights, offering significant
performance improvements in setups with high range low
variety depth distributions. Clustered forward (Olsson et al.,
2012) evolves the bidimensional grid used as an acceleration
structure to a tridimensional grid. Thus, there are many more
lists and the intersection between lights and objects is
evaluated at a considerably larger spatial sampling rate,
giving superior results and less erroneous light-object
intersections. Clustered deferred (Olsson et al., 2012)
rendering is similar to clustered forward but instead uses the
available visibility information to have a better spatial
distribution for the clusters.

2.3 Decoupled

Since deferred rendering is prone to aliasing, some sort of
anti-aliasing solution is required. The trivial solution of
multisampling the Geometry Buffer leads to an enormous
amount of allocated memory. The preferred solutions are to
run the deferred algorithm at per pixel sampling resolution
and then do antialiasing work in a post processing
framework. The main algorithms used in the post processing
stage are FXAA, MLAA and SRAA (Jimenez et al., 2011).
But even with these anti aliasing methods there are situations
where without programmable multi sampling an extremely
large number of samples would be required. Geometric
setups like those that led to the development of WireAA
(Jimenez et al., 2011), and effects such as motion blur and
depth of field all make choosing the Geometry Buffer
samples a complicated and frame varying choice.

The concept of decoupling sampling rates in real time
rasterization was inspired from the REYES (Cook et al.,

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

1988) rendering pipeline. In (Ragan-Kelley et al., 2011) the
authors separate the visibility and the shading samples and
create a many-to-one dependency between the former and the
latter. Decoupled sampling was adopted for deferred
rendering methods in (Liktor et al., 2012) with the
introduction of the Compact Geometry Buffer (CG - buffer).
This method is the first one in which the coupling of
frequencies between the visibility sampling rate and the
shading sampling rate is handled rigorously in a deferred
context. Instead of using a lot of visibility and shading
samples to implement stochastic rasterization, decoupled
sampling is used to provide extra samples in the deferred
buffer in the places where it is under sampled. By using this
method, motion blur and depth of field effects are attainable.
The implementation of decoupled sampling is complicated
and requires SM5 hardware.

Sort based deferred rendering (Clarberg et al., 2013)
improves the Compact Geometry Buffer from (Liktor et al.,
2012) by sorting and then culling occluded primitives in
worktiles, and shading the fragments in an order that
improves texture access coherency.

The Visibility Buffer algorithm (Burns et al., 2013), also
named Deferred++, applies the idea of decoupled sampling to
bandwidth starved hardware. Instead of storing many
different data in the G-Buffer this method only stores the ids
of the closest visible primitives and then computes the final
visual result per tile. For each tile it loads all the required
information such as geometry, lights and textures into the
fastest available memory. Because the algorithm requires a
limited amount of memory it has low energy consumption.

Furthermore, techniques in which deferred rendering is the
foundation for global illumination methods such as
Reflective Shadow Maps (Dachsbacher, 2005), SSDO
(Ritschel et al., 2009) or in which it acts as the first bounce in
a path or cone tracing type of algorithm such as in Voxel
Cone Tracing (Crassin, 2011) or Real-time Birdirection Path
Tracing via Rasterization (Tokuyoshi et al., 2012) can also be
considered decoupled sampling. The primary segments in the
path are sampled at the multisampled screen resolution
frequency, while the rest of the segments in the path are
obtained by sampling the scene a different frequency, often
much lower than the one used for the first segments.

3. ANALYZING DEFERRED

In this section we define the symbols that are used in
algorithm comparison and analysis. The four spaces of
analysis are GPU commands, processing cost, allocated
memory and expected bandwidth consumption. Each of these
can be a performance bottleneck. The GPU commands are
used to weigh the algorithm’s cost in transferring commands
through the memory bus, it includes state changes, drawing
commands and pipeline stalls. On some hardware
architectures with a lot of processing power and large
bandwidth capabilities, the number of GPU commands can
become the most difficult to solve bottleneck.

The processing cost measures the computational weight of
the algorithm. The allocated memory and the bandwidth
consumption are used to differentiate between the

predetermined memory costs of the algorithm (e.g. G-buffer)
and the expected memory accesses. The difference between
these becomes more pronounced when using superior
sampling methods. Also, bandwidth requires a lot of energy
consumption, so a lot of attention has to be given to it in
mobile oriented rendering.

This is the list of symbols used in our algorithm analysis
framework. Bandwidth and memory are measured in floats.
Where it is applicable, the bandwidth includes attributes and
interpolators, for example in the vertex bandwidth cost.
 .number of scene objects
݈ number of scene lights.
 ௗ cost of a single GPU object draw command
݈ௗ cost of a single GPU light draw command
 .number of object vertices ݒ
 . processing cost for an object vertexݒ
 ௗ bandwidth cost for an object vertexݒ
 .number of light vertices ݒ݈
 . processing cost for a light vertexݒ݈
 ௗ bandwidth cost for a light vertexݒ݈
 .number of fragments from objects rasterization ݂
 ݂ௗ bandwidth cost of a single object fragment sample.
݈݂ total number of fragments from lights rasterization.
݈ ݂ௗ bandwidth cost of a single light fragment.
 processing cost of the illumination modelݍ݁
, ܿ, .total number of pixels, tiles, respectively clusters ݐ
,ݏݒ .maximum, expected visibility pixel samples ݁ݏݒ
,ݏݏ .maximum, expected shading samples per pixel ݁ݏݏ
݈݈݉݁݉ maximum allocated memory for light lists.
 .maximum allocated memory for object data lists ݈݉݁݉
,݈ܿ .light, vertex culling probability ܿݒ
 .ௗ total cost of the GPU commandsܭ
 . total cost of allocated memory, in floatsܭ
 . total cost of processingܭ
 .ௗ total bandwidth cost, in floats read or writtenܭ

4. ALGORITHM DISCUSSION

In the following algorithm examinations we assume that the
output framebuffer is of the 8 bit RGBA type, which can be
written in a single memory instruction, and that the depth
buffer has the size of a 32 bit float. Where the visibility and
shading samples are coupled we always use ݏݏ instead of
 In both the memory and bandwidth costs we include .ݏݒ
everything besides the default framebuffer. We do not add
constant costs such as the commands cost for the final pass in
deferred rendering. The equations will be written with
readability not compactness in mind, following the steps of
each algorithm. Special attention is given to the equations
layout, where each rendering pass is written between curly
braces, with the number of the pass added as a subscript.

4.1 Forward Rendering

Forward rendering (F+) is included for comparison reasons.
ௗܭ ൌ ሼ ൈ ݈ ൈ ௗሽଵ
ܭ ൌ ൛ݒ ൈ ݒ ݂ ൈ ݈ ൈ ൟଵݍ݁

ܭ ൌ 0
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 2ሻሽଵ

34 CONTROL ENGINEERING AND APPLIED INFORMATICS

4.2 Depth Pre-Pass

Depth pre-pass rendering (DPP) is the first to separate
visibility determination and shading. While it does not
decouple light and object intersection, the authors believe that
because it does actual separation it is correct to consider it an
early deferred algorithm. It is also commonly used and thus
its analysis is practical. It consists of two passes, in the first
one the scene objects are rendered without materials, textures
or special effects in a process called depth only rendering.
After the first pass, the depth buffer stores for each pixel the
depths of the closest objects. In the second pass the scene
objects are drawn with forward rendering, but the early Z
rejection destroys all the fragments that are not visible before
the shading stage, therefore the shading is evaluated only for
the visible fragments and it is executed at a different
frequency than that used for visibility determination. The
performance metrics are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ ൈ ݈ ൈ ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛ݒ ൈ ݒ ൈ ൟଶݍ݁

ܭ ൌ 0
ௗܭ ൌ ሼݒ ൈ ௗݒ ൈ ሺ ݂ௗ 2ሻሽଶ
ሼݒ ൈ ௗݒ ሽଵ݂

While benefiting from material flexibility and being easily
multisampled with hardware MSAA, the GPU code path
combination explosion and the inability to handle many lights
makes rendering dense scenes a difficult task with the depth
pre-pass method. Still, on some memory constrained
hardware platforms depth pre pass can prove to be a useful
technique.

4.3 Deferred Rendering

Also known as deferred shading (D), this is a three phase
algorithm and it is the first that can handle a large number of
lights because it is the first that decouples light scene
management and object scene management. In the first pass
the objects are rendered and saved into a geometry buffer,
similar to the memory structure depicted in Figure 1.

Fig. 1. The Geometry Buffer. Normals, albedo, illumination
and other details of the visible opaque objects of the scene is
saved in a multi-rendertarget buffer.

Besides the lighting accumulation buffer and the normal
buffer the other information can vary depending on rendering
architecture, but the principle is identical. In the second pass
the lights are rendered as geometry, being rasterized over the
geometry buffer, which contains information about all the on-
screen visible opaque objects. For each light the G-Buffer is
queried for information, the initial object position is
reconstructed from depth and then, the lighting equation is
evaluated, its result is then added in the accumulation buffer.

Fig. 2. Render targets in deferred rendering: albedo, depth,
diffuse radiance, normals, specular radiance and the final
composited image.

In the final pass, called composition pass or shading pass, the
albedo information is combined with the accumulated
lighting from the second pass to obtain the final radiance per
pixel. This is done in a full screen pass. A visual outline of
the render targets is given in Figure 2.The performance
metrics for deferred rendering are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ݒ݈ 	݈݂ ൈ ൟଶݍ݁

ܭ ൌ ൈ 4
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ
 ሼ݈ݒ ൈ ௗݒ݈ ݈݂ ൈ ሺ݈ ݂ௗ 3ሻሽଶ ሼ ൈ 3ሽଷ

In the bandwidth cost the ݈ ݂ௗ 3 term refers to the
bandwidth cost of the light fragment, plus reading the depth
and normals and writing to the light accumulation buffer. The
 ݂ௗ 3 term contains the reading from the albedo and
light accumulation render targets and the final color output.
The deferred algorithm lowers the command costs
significantly and eliminates the processing cost from the
pixels where lights don’t intersect objects, therefore it can
easily handle a much larger number of lights. On the other
hand, the allocated memory is considerable. The most
important problem with deferred rendering is the
impossibility to handle correct transparency, because the
algorithm only keeps information about the closest objects
for each pixel. A variant of this technique, deep deferred
rendering (DD), employs a series of layers that partition the
scene objects into multiple layers ordered by depth. The
layers can be implemented through multiple shading samples,
each sample representing a layer. The disadvantage is that
with deep deferred rendering each layer adds memory and
bandwidth costs equal to those of an additional G-buffer,
which quickly add up to a prohibitive expenditure. The
performance metrics for deep deferred rendering are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଷ
ܭ ൌ ൛݈ݒ ൈ ݒ݈ ݈݂ ൈ ݏݏ ൈ ൟଶݍ݁

൛ݒ ൈ ൟଵݒ

ܭ ൌ ൈ 4 ൈ ݏݏ
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻ ൈ ሽଵݏݏ
ሼ݈ݒ ൈ ௗݒ݈ ݈݂ ൈ ሺ݈ ݂ௗ 3ሻሽଶ ሼ ൈ 3 ൈ ሽଷݏݏ

CONTROL ENGINEERING AND APPLIED INFORMATICS 35

Moreover, the final shading pass resolution is limited to
match that of the first visibility determination pass, therefore
MSAA is very expensive from a memory and bandwidth
standpoint because it has to be applied to the entire G-buffer,
thus effectively becoming SSAA (Jimenez et al., 2011) and
also being visually identical to deep deferred rendering. The
results can be improved with full screen geometric anti
aliasing methods such as MLAA, FXAA, SRAA (Jimenez et
al., 2011), TXAA or RSAA (Reshetov, 2012).

4.4 Deferred with MSAA

Hardware MSAA is an important and efficient means to
lowering geometric aliasing in rasterization. It is efficient
because it computes samples only when they are needed, in
contrast with SSAA. As the bandwidth and not the allocated
memory is usually the major bottleneck with deferred
rendering variants, this algorithm focuses on lowering
bandwidth by increasing sampling rate only for the pixels on
which a geometric edge is rasterized.

Deferred MSAA (DAA) has three stages. In the first stage the
objects are rendered into a multisampled G-buffer. The
existence of edges is determined using a centroid
interpolation scheme (Thibieroz, 2009). If the pixel contains
an edge then the stencil will be set to non-negative, otherwise
it is set to zero. The second stage is composed of two
different shading passes. The first pass is run at pixel
frequency and it evaluates the illumination equation and then
writes its result to sample zero in a multisampled light
accumulation buffer. The second pass is run at sample
frequency, with the stencil set to pass only for the pixels that
contain an edge, as it was previously determined in the first
stage.In the final stage the multisampled G-buffer and
accumulation buffer are composited and then final result is
outputted. The performance metrics for MSAA deferred
rendering are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛݈ݒ ൈ ݒ݈ ݈݂ ൈ ݁ݏݏ ൈ ൟଶݍ݁

	൛ݒ ൈ ൟଵݒ

ܭ ൌ ൈ 4 ൈ ݏݏ
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻ ൈ ሽଵݏݏ
	ሼ݈ݒ ൈ ௗݒ݈ ݈݂ ൈ ݁ݏݏ ൈ ሺ݈ ݂ௗ 3ሻሽଶ
 ሼ ൈ 3 ൈ ሽଷݏݏ

This method offers an allocated memory size comparable to
that of deep deferred rendering but with a bandwidth closer to
classic deferred rendering. Even with the increased
processing cost, it is practical.

4.5 Light Pre Pass Rendering

Light pre-pass rendering (LPP), also known as deferred
lighting, is a three pass algorithm that combines the light
object decoupling introduced by deferred rendering with the
ease of material management and hardware multisampling
from forward rendering. It does so by further decoupling
visibility and shading. Compared to deferred rendering, it
does not need to load and compute albedo or material factors
in the first geometry pass. While deferred rendering
effectively mixes shading and visibility determination work

and thus wastes processing and bandwidth on occluded
fragments, light pre pass rendering does shading work only
for the visible shading samples, because this work is
computed after completing the visibility determination stage.

In the first pass the objects are rendered into a smaller G-
buffer, which holds only depth and normals. In the second
pass the lighting equation is evaluated like in the classic
deferred lighting pass, with position reconstructed from
depth, and the result accumulated in the lighting buffer. In the
final pass the objects are rendered with full materials and
textures. Because of the depth buffer from the first pass only
the closest object fragments will be shaded in this pass. The
first pass is through effect similar to depth pre-pass. The
performance metrics for light pre pass rendering are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ ሼ ൈ ௗሽଷ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ݒ݈ ݈݂ ൈ ൟଶݍ݁

൛ݒ ൈ ൟଷݒ

ܭ ൌ ൈ 3
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ 2ሽଵ
ሼ݈ݒ ൈ ௗݒ݈ ݈݂ ൈ ሺ݈ ݂ௗ 3ሻሽଶ
 ሼݒ ൈ ௗݒ ൈ ሺ ݂ௗ 2ሻሽଷ

In the bandwidth cost is only ݂ௗ 2 since in the final
pass the albedo isn’t read from a previous render target.
Because this algorithm does not write more than twice per
fragment, one write being depth, it can be implemented on
hardware that does not have multiple render targets.
Furthermore, with this technique hardware MSAA can be
used in the final pass and the lighting information can be used
for transparent objects. On the other hand the large number of
GPU commands can become a bottleneck for large scenes.
Since the bottleneck in deferred rendering is generally
overdraw in the geometry pass, the bottleneck in light pre
pass rendering is usually either the GPU commands cost or
the vertex processing cost. This performance varies
depending on scene configuration. Hybrid deferred rendering
(Hoef, 2013) is an algorithm that combines deferred
rendering and light pre pass rendering, dynamically deciding
the shading path per object using a path selection method. It
does so by predicting the overdraw cost per object and then it
decides which path is more efficient, at a per object level.

4.6 Deferred with Transparency

Correct transparency is impossible to obtain in rasterization
with deferred methods, since they store only a fraction of the
required information. Nevertheless, methods such as deferred
rendering transparency (Pangerl, 2009) and Inferred
rendering (Kirscher et al., 2009) render inexact transparency
through the use of multiple passes which decouple the opaque
and transparent objects and combine their results through
stippling patterns. Deferred Transparency’s (DT) first pass
the opaque objects are drawn into a G-buffer, like in all
deferred algorithms. We make use of the stippling vicinity, a
kernel of ݇	 ൈ ݇ size used for transparency operations. Let
 be the number of elements in the stippling vicinity ݇ݏܽ݉
which will be considered for transparent storage and let ߬ be
the percentage of the transparent objects out of all the scene
objects. Common stippling patterns are shown in Figure 3.

36 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 3. Stippling deferred transparency. Stippling patterns can
be used to store sparse transparency information in a Gbuffer.

In the second pass, the transparent objects are rasterized with
a stippling pattern, writing only where the stippling mask
permits it, as shown in the right side of Figure 3. The
information from the transparent objects is written into
another G-buffer that stores information only where the
stippling mask permits it, being of maskp/kଶ resolution.

In the third pass the lighting is computed relative to both G-
buffers and then accumulated. In the final pass the lighting is
applied to the objects. A simple approximation filter
(Pangerl, 2009) or a bilateral filter, named discontinuity
sensitive filter in (Kirscher and Lawrence, 2009), can be used
to reconstruct transparency information for the kernel entries
that were masked out, but the entire vicinity has to be read.
The filter can use the distance between the pixel and each
masked entry in the stippled vicinity as a weight function.

Stippling masks can act as more than a set of mask entries.
Each single mask entry can store transparency information
for the entire vicinity, making this method act as deep
deferred rendering for transparent objects, but at a	1/݇ଶ
resolution. In the composition pass, for each pixel the entire
vicinity is read, sorted by depth and then composited. Even
with this method correct complex transparency effects are
impossible to obtain.

 The performance metrics are:

ௗܭ ൌ ሼሺ1 െ ߬ሻ ൈ ൈ ௗሽଵ ሼ߬ ൈ ൈ ௗሽଶ
ሼ݈ ൈ ݈ௗሽଷ
ܭ ൌ ൛ሺ1 െ ߬ሻ ൈ ൈ ൟଵ ൛߬ ൈ ൈ ൟଶ

ቄ݈ݒ ൈ ݒ݈ ݈݂ ൈ ሺ1
௦

మ
ሻ ൈ ቅݍ݁

ଷ

ܭ ൌ ൈ 4 ൈ 3 ൈ
݇ݏܽ݉
݇ଶ

ௗܭ ൌ ൜݂ ൈ ሺ1 െ ߬ ߬ ൈ
݇ݏܽ݉
݇ଶ

ሻ ൈ ሺ ݂ௗ 3ሻൠ
ଵଶ

൜݈ݒ ൈ ௗݒ݈ ݈݂ ൈ ሺ1
݇ݏܽ݉
݇ଶ

ሻ ൈ ሺ݈ ݂ௗ 3ሻൠ
ଷ

 ൜ ൈ ሺ ݂ௗ 2
݇ݏܽ݉
݇ଶ

ሻൠ
ସ
 ሼ	ݒ ൈ ௗሽଵଶݒ

4.7 Light Indexed Deferred

In general, the greatest processing cost when doing deferred
rendering is in evaluating the illumination equation. Since all
the lights are intersected with the nearest objects per pixel,
this leads to a lot of computations that have no impact in the

final rendering because the lights are too far away from the
object surface stored in that pixel. Another problem is the fact
that some lights have a dominant contribution in the
accumulation buffer and this makes other lights to be
insignificant by comparison. Probably the most important
problem originates from a quality constraint. In order to
correctly accumulate the light contributions the accumulation
process has to be evaluated in a high floating point resolution
buffer which largely increases the bandwidth of the
algorithm. Normally, deferred rendering accumulates light in
an 8 bit per channel setup, which can easily lead to overflows
and therefore has to be clamped.

Light indexed rendering is a type of deferred rendering where
the lighting pass is used exclusively to gather all the
potentially contributing lights and, with them, to compute the
lighting equation during the final pass. The lights are
gathered through index lists, minimizing bandwidth. There
are two variants for this algorithm. The first one runs on
SM4, while the second one requires SM5. The first one,
called light indexed deferred rendering (LiD), starts with a
geometry stage that fills the G-buffer. Then, in the lighting
stage, it divides the light index into ݊ parts, each representing
ܾ bits. For the current formulas we will use ݊ ൌ 4 and ܾ ൌ 2
as they have the most practical value for this algorithm. A
first in first out list which keeps only the most recent ݊
indices per pixel can be implemented with the following
blending equation:

ݐ݈ݑݏܴ݁ ൌ ݐ݊݁݉݃ܽݎܨݓ݁ܰ 0.25 ൈ ݐ݊݁݉݃ܽݎܨ݈ܱ݀

The lights need to be coarsely sorted for this algorithm to
work. After the lighting pass has ended the last 4 indices are
from the closest lights. Then, in the final composition pass,
for each pixel, the four closest lights’ indices are
reconstructed and illumination is evaluated. The performance
metrics for light indexed deferred are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈

	൛ ൈ 4 ൈ ൟଷݍ݁

ܭ ൌ ൈ 4
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ
ሼ݈ݒ ൈ ௗݒ݈ ݈݂ሽଶ ሼ ൈ ሺ݈ ݂ௗ ൈ 4 4ሻሽଷ

Fig. 4. Linked lists on the GPU. Linked lists are used to store
lights that intersect pixels, tiles or clusters.

List based light indexed deferred rendering (LLiD) is the
second variant of the light indexed variants. The algorithm is

CONTROL ENGINEERING AND APPLIED INFORMATICS 37

identical to light indexed deferred rendering, with the only
difference being in how the lists are handled. In the list based
version full lists are implemented for each pixel, keeping the
index of every light that was rasterized over it. In the final
pass, the entire list is loaded and the light equation is
evaluated for each light index. The process of adding
elements to a list on the GPU is described in Figure 4. The
performance metrics for list based light indexed deferred:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈ ൛݈݂ ൈ ൟଷݍ݁

ܭ ൌ ൈ 3 ݈݈݉݁݉
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ
 ሼ݈ݒ ൈ ௗݒ݈ ݈݂ሽଶ ሼ݈݂ ൈ ݈ ݂ௗ ൈ 4ሽଷ

Both light indexed algorithms can be written from a light pre
pass perspective, with two geometry passes, named light
indexed forward (LiF) and list based light indexed forward
(LLiF). An interesting property of light index based solutions
is that they trade the sequential light data memory access
pattern found in the lighting pass of deferred methods for a
sequential G-buffer data memory access pattern in the final
pass. Since light data is usually much smaller in terms of
bandwidth compared to G-buffer data, this trade-off becomes
a big performance gain when using many lights.

4.8 Tiled Shading

Tiled rendering emphasizes coherent memory accesses and
local optimizations, both of which are extremely common in
rendering. Tiled shading (Olsson, 2011) combines the
deferred rendering principles with the tiled rendering
benefits. It has two variants: tiled deferred shading (TD) and
tiled forward shading (TF). Tiled deferred shading is a three
pass algorithm that is similar to deferred rendering and tiled
forward shading is a three pass algorithm similar to light pre
pass rendering, but instead of the normal lighting pass both
algorithms use a tiled lighting pass. What makes tiled shading
unique is that it has an explicit light intersection acceleration
structure, a uniform grid, which is fully programmable
compared to the raster acting as an implicit uniform grid.

Because tiled rendering explicitly groups lights by post
projection positions in its lighting pass, it acts as a clustering
algorithm in screen space. Thus, pixels in a neighbourhood
which are in the same tile extruded frustum and which have a
high probability to be lit by the same lights are now sharing a
light index list instead of each pixel owning one. This leads
to a large reduction in bandwidth in the lighting pass but also
increases the synchronization needs, which are matched by
expensive atomic operations.

In the tiled composition final pass the parent tile of the
evaluated pixel is queried for the list of potential contributor
lights indices, which are then read and with which the
illumination equation is evaluated. By doing so the tiled
lighting pass is equivalent to doing a list based light indexed
deferred rendering light pass but at 1/t resolution. Also,
similar to the light indexed variants, the tiled shading variants
trade the sequential light data access pattern for a sequential
G-buffer access pattern, which leads to improved bandwidth.

Fig. 5. Tiled light rasterization. The screen is divided into
tiles, each tile holds a list of light indices that are potential
contributors. The numbers in the image represent the number
of lights for each tile list, zero where not shown.

The final pass is evaluated in a compute shader, thus the
bandwidth for reading lights for the entire tile is consumed
only once, by using local memory in a compute shader. The
performance metrics for tiled deferred rendering are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈ ൛݈݂ ൈ ൟଷݍ݁

ܭ ൌ ൈ 3 ݈݈݉݁݉
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ

൜݈ݒ ൈ ௗݒ݈
݈݂
ݐ
ൠ
ଶ
 ൜

݈݂
ݐ
ൈ ݈ ݂ௗ ൈ 4ൠ

ଷ

The performance metrics for tiled forward rendering are:
ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ ሼ ൈ ௗሽଷ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈

൛ݒ ൈ ݒ ݈݂ ൈ ൟଷݍ݁

ܭ ൌ ൈ 2 ݈݈݉݉

ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ 2ሽଵ ൜݈ݒ ൈ ௗݒ݈
݈݂
ݐ
ൠ
ଶ

 ൜ݒ ൈ ௗݒ ൈ ݂ௗ ݈ ݂ௗ ൈ
݈݂
ݐ
 ൈ 2ሻൠ

ଷ

4.9 Forward+

Even with the usage of tiles there are many situations where
the illumination equation is evaluated for false positives. The
tiles do not offer to possibility of detailed light-object
intersection on the depth axis, therefore even if a light could
be easily determined to be non-intersecting with any object
rasterized on that tile, it would still be added to the tile light
list. Forward+ (F+) is an advanced variant of tile based
forward rendering where a depth mask is kept for each tile.
The algorithm, known as 2.5D culling is depicted in Figure 6.

Fig. 6. 2.5D culling. Low resolution depth occupancy maps
are used to quickly solve intersection tests. Lights not
intersecting tile geometry are not used in lighting operations.

The depth mask bits are set for the conservatively
approximated depth intervals where an object is rasterized
over the tile. When the light pass is executed, a depth mask is

38 CONTROL ENGINEERING AND APPLIED INFORMATICS

created for each light and it is compared to the objects depth
mask of the tile. If the masks do not intersect than the light is
culled, if they intersect the light is added to tile light list. In
order to establish the best depth interval for the object depth
mask the objects can be rendered twice: once they write only
depth, to establish the minimum and maximum bounds per
tile. The second time the objects are rendered to determine
the exact mask. The performance metrics for Forward+ are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ ሼ ൈ ௗሽଷ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈

	൛ݒ ൈ ݒ ݈݂ ൈ ሺ1 െ ሻ݈ܿ ൈ ൟଷݍ݁

ܭ ൌ ൈ 3 ݈݈݉݁݉

ௗܭ ൌ ൜݈ݒ ൈ ௗݒ݈
݈݂
ݐ
ൈ ሺ1 െ ሻൠ݈ܿ

ଶ

൜ݒ ൈ ௗݒ ൈ ݂ௗ 	݈ ݂ௗ ൈ
݈݂
ݐ
ൈ ሺ1 െ ሻൠ݈ܿ

ଷ
	ଷ 	ሼݒ ൈ ௗݒ ሽଵ݂

As scenes contain more lights the ݈ܿ factor grows and the
algorithm obtains superior performance compared to normal
tiled variants. This algorithm is especially optimized for
scenes where the ratio between light complexity and
geometric complexity is high. Furthermore the algorithm can
be adjusted towards a light pre-pass stage structure in order to
work with hardware MSAA and to handle transparency.

Also, if the vertex processing cost is deemed too high the
depth masks can be programmed to use the entire depth
resolution, therefore a single object rendering pass is
necessary. On the other hand, as expected, this will decrease
light culling efficiency.

4.10 Clustered Deferred

Clustered rendering follows the evolution path of tiled
rendering and forward+ by improving the light object explicit
acceleration structure. Instead of using tiles and depth masks
per tile, the acceleration structure for light object intersection
is a tridimensional grid, where each cluster will manage a list
of lights. Basically, each tile from tiled deferred is divided
into multiple entries and instead of using a single bit per
depth partition an entire cluster is used.

For clustered rendering the same interval computation
method is used as the one in Forward+. The scene objects are
rendered twice: once to determine the depth interval per
screen space tile and once to populate the clusters.

In the lighting stage instead of adding all the lights to a single
list per tile, they are added to the parent cluster. If a cluster is
guaranteed to not intersect any objects then the entire cluster
is discarded. If no depth distribution information is available,
for example when only an object rendering pass is used, then
the clusters can be constructed for the entire depth resolution,
with suboptimal results but with cheaper vertex processing
and GPU command costs.

The light clustering technique can be used for both deferred
rendering and for light pre pass rendering resulting in
clustered deferred (CD), respectively clustered forward (CF).
The performance metrics for clustered deferred rendering:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈

൛݈݂ ൈ ሺ1 െ ሻ݈ܿ ൈ ൟଷݍ݁

ܭ ൌ ൈ 3 ݈݈݉݁݉
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ

 ൜݈ݒ ൈ ௗݒ݈
݈݂
ܿ
ൈ ሺ1 െ ሻൠ݈ܿ

ଶ

 ൜	݈ ݂ௗ ൈ
݈݂
ܿ
ൈ ሺ1 െ ሻ݈ܿ ൈ 4ൠ

ଷ

The performance metrics for clustered forward rendering:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ ሼ ൈ ௗሽଷ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈ݒ ൈ ൟଶݒ݈

	൛ݒ ൈ ݒ ݈݂ ൈ ሺ1 െ ሻ݈ܿ ൈ ൟଷݍ݁

ܭ ൌ ൈ 2 ݈݈݉݁݉
ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ 3ሽଵ

ቄ݈ݒ ൈ ௗݒ݈

ൈ ሺ1 െ ሻቅ݈ܿ

ଶ
	ଷ

൜ݒ ൈ ௗݒ ൈ ݂ௗ 	݈ ݂ௗ ൈ
݈݂
ܿ
ൈ ሺ1 െ ሻൠ݈ܿ

ଷ

The depth distribution of the clusters can also be different
from uniform, for example they can be logarithmic.

4.11 Deferred++

Deferred++ (D++), also known as the Visibility Buffer
algorithm (Burns et al., 2013), is a deferred technique that has
4 stages. Its main focus is to reduce both memory and
bandwidth requirements. The process is shown in Figure 7.

Fig. 7. The Visibility Buffer and its four stages: visibility
determination, workpass and tile list construction, a tiled light
pass, and a shading pass.

In the first visibility determination stage, instead of using a
normal G-buffer like structure, it stores only the primitive
indices of the intersecting objects and the depth on multiple
visibility samples per pixel. In the second stage, named
workstage pass, the visibility entries from the previous pass
are read and pairs of tile index and shader index are created.
These pairs are sorted by the shader index. The third stage is
a tiled light pass, identical to the one used in tiled deferred
rendering. In the final stage each shader is executed over its
list of tiles, offering improved cache coherency for shading.
In the compute shader based shading pass the entire
rasterization process is executed programmatically. The
primitive indices from the tile are read and the vertex shader
function inside the compute shader is executed for each of
them. The vertices are then rasterized programmatically and
their attributes are interpolated. The resulting in-tile

CONTROL ENGINEERING AND APPLIED INFORMATICS 39

fragments are processed with the fragment function inside the
same compute shader.

On a local level, the intersection acceleration structure acts as
a many-to-many object-light intersection instead of the one-
to-many type of intersection found in the explicitly or
implicitly accelerated deferred algorithms. Because of this
increased information at the tile level, multiple local samples
can be easily obtained and they can also be sorted, therefore
motion blur, depth of field and transparency can be
implemented without extra impediments. Let ݈݁݅ݐௗ be GPU
command cost of issuing one workpass tile execution,
 ௦௧ be the cost of sorting the workpass tiles. Theݐݎݏ
performance metrics for Deferred++ are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଷ ሼݐ ൈ ௗሽସ݈݁݅ݐ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ሼݐݎݏ௦௧ሽଶ ൛݈ݒ ൈ ൟଷݒ݈

	ቄ
௩

௧
ൈ ݒ ݈݂ ൈ ሺ1 െ ሻ݈ܿ ൈ ቅݍ݁

ଷ

ܭ ൌ ൈ 3 ݈݈݉݁݉

ௗܭ ൌ ሼݒ ൈ ௗݒ ݂ ൈ 2ሽଵ ቄ

ݐ
ൈ 2ቅ

ଶ

 ൜݈ݒ ൈ ௗݒ݈
݈݂
ݐ
ൈ ሺ1 െ ሻൠ݈ܿ

ଷ
 ସ

 ൜
ݒ
ݐ
ൈ ௗݒ ൈ ݂ௗ 	݈ ݂ௗ ൈ

݈݂
ݐ
ൈ ሺ1 െ ሻൠ݈ܿ

ସ

4.12 Decoupled Deferred Rendering

Decoupled Sampling for rendering was introduced in (Ragan-
Kelley et al., 2011) and it was inspired by the REYES
rendering pipeline (Cook et al., 1988). The algorithm acts as
a generalization of MSAA and it completely decouples the
visibility samples and shading samples. It creates a many-to-
one relationship between visibility samples and shading
samples which dramatically improves efficiency in
evaluating effects that require multiple shading samples per
fragment such as depth of field or motion blur. For example a
moving surface from a primitive might be rasterized over a
different number of pixels in a single time frame. This is very
common since no frame is instantaneous and objects will
move during the frame time, creating the visual effect of
motion blur. Normal rasterization rendering requires
evaluating and shading this surface more than once for the
correct computation of motion blur, but with decoupled
sampling all the visibility samples generated by the moving
surface will point to the same shading sample, therefore the
surface would be only once shaded, and a substantial amount
of computation and bandwidth is saved.

In order to implement decoupled sampling a mapping
mechanism is required, to map the visibility samples to the
shading samples. This structure is named a memoization
cache. It acts as a first in first out queue, which holds the
most recent mappings between visibility samples and shading
samples. It is implemented as queue and not as a map in order
to fit into the small caches available to GPUs. Furthermore,
geometry exhibits data access patterns of high locality, thus a
large cache would mostly not improve performance. The
memorization cache is inefficient on GPUs, as it needs
synchronization. The concept is described in Figure 8.

Fig. 8. Decoupled sampling. Shading samples are reused
instead of being recomputed for each visibility determination
sample.

The concept of decoupled sampling was applied to deferred
rendering in (Liktor et al., 2012). The structure of the
geometry buffer was altered and the new memory structure is
named Compact Geometry Buffer (CG-buffer). In Deferred
Decoupled Sampling (DDS) instead of keeping a structure
similar to that displayed in Figure 1, the CG-buffer is more
similar to the structures used in List Based Light Indexed
Deferred Rendering. The CG-buffer stores the shading
sample (position, normal, albedo, reflectance, etc) data. Each
entry in the CG-buffer is referenced by visibility samples. For
example the 4 visibility samples from Figure 8 would all
reference the same CG-buffer entry obtaining a significant
bandwidth consumption reduction. The CG-buffer also
contains a screen sized multisampled memory structure for
visibility samples and depths.

The algorithm works in 3 stages, similar to normal deferred
rendering. In the geometry stage the CG-buffer is filled as
following: prior to rendering each object primitive is assigned
a unique surface shading id range, named ݀݅ݏݏ	݁݃݊ܽݎ. With
this id and a hash function each fragment can uniquely
identify which is the shading sample ݀݅ݏݏ	that points to the
real shading data that would normally be stored in a G-buffer.
If the indicated shading sample data was previously read and
stored, the current visibility sample just references it.
Otherwise, the current visibility sample reads, evaluates and
stores the shading sample. The lighting stage is identical to
that in tiled deferred rendering, keeping only the indices of
the potential contributor lights. In the final stage, the radiance
is evaluated by intersecting the lights stored in the lighting
stage with the shading samples referenced by the visibility
samples from the CG-buffer. Let ݄ܿௗ , ݄ܿ and
݄ܿܽܿ݁% be the bandwidth cost, processing cost and hit
percentage of searching the cache for a reference to a shading
sample. The performance metrics are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼ݈ ൈ ݈ௗሽଶ
ܭ ൌ ൛ݒ ൈ ݒ ݁ݏݒ ൈ ݂ ൈ ݄ܿൟଵ

൛݈ݒ ൈ ൟଶݒ݈ ൛ ൈ ݁ݏݏ ൈ ൟଷݍ݁

ܭ ൌ ݏݒ ൈ ൈ 2 ݏݏ ൈ ൈ 	3 ݈݈݉݁݉
ௗܭ ൌ ሼݒ ൈ ௗݒ ݁ݏݒ ൈ ݂ ൈ 2ሽଵ

ሼሺ1 െ ݄ܿ%ሻ ൈ ݁ݏݏ ൈ ݄ܿௗ ൈ ݂ ൈ ሺ ݂ௗ 3ሻሽଵ

ሼ݈ݒ ൈ ௗݒ݈ ݈݂ሽଶ ሼ݈݂ ൈ ሺ݈ ݂ௗ 3ሻ ൈ 3 ൈ ሽଷ݁ݏݏ

40 CONTROL ENGINEERING AND APPLIED INFORMATICS

Because of the bottleneck created through the high cost of
atomic operations in the memoization cache an alternative
version of the algorithm is provided in (Liktor et al., 2012).
The geometry stage is solved through three passes. The first
pass uses rasterization to store the ݀݅ݏݏ for each visibility
sample, without storing the shading sample data. The second
pass uses compute shader tiles to map the visibility samples
to shading samples, making memory accesses more coherent.
The last pass uses rasterization to render the objects and store
the shading samples. Therefore the algorithm has five stages.
Let ݈݁݅ݐௗ, ݈݁݅ݐ and ݈݁݅ݐௗ be the command,
processing and bandwidth costs of a tile. The algorithm has
the following performance metrics:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼݐ ൈ ௗሽଶ݈݁݅ݐ ሼ ൈ ௗሽଷ
ሼ݈ ൈ ݈ௗሽସ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈݁݅ݐൟଶ ൛ݒ ൈ ൟଷݒ

൛݈ݒ ൈ ൟସݒ݈ ൛ ൈ ݁ݏݏ ൈ ൟହݍ݁

ܭ ൌ ݏݒ ൈ ൈ 2 ݏݏ ൈ 	 ൈ 3 ݈݈݉݁݉

ௗܭ ൌ ሼݒ ൈ ௗݒ ݁ݏݒ ൈ ݂ܽ ൈ ൈ 2ሽଵ
ሼݐ ൈ ௗሽଶ݈݁݅ݐ ሼ݈ݒ ൈ ௗݒ݈ ݂݈ܽ ൈ ሽସ
 ሼݒ ൈ ௗݒ ݁ݏݏ ൈ ൈ ሺ ݂ௗ 3ሻሽଷ
 ሼ݈݂ܽ ൈ ൈ ሺ݈ ݂ௗ 3ሻ ൈ 3 ൈ ሽହ݁ݏݏ

4.13 Sort Based Deferred For Decoupled Sampling

Sort based deferred for decoupled sampling (SbDDS) was
introduced in (Clarberg et al., 2013). Similar to the ݀݅ݏݏ
shading sample identifiers, they define shading point
identifiers, ݀݅ݏ. These shading point identifiers differ from
 in that they also contain a Morton encoded Z-order that ݀݅ݏݏ
works with 2x2 quads in order to provide implicit derivative
information during rasterization. Compared to decoupled
deferred rendering it does not need to use a memoization
cache as the ݀݅ݏ includes both primitive ID, the shading
space 2x2 quad and the exact tile in the quad.

Fig. 9. SPID in sort based decoupled sampling. Data from the
rasterized primitive is stored and shaded in Morton order.

The algorithm runs in four passes. In the first pass the objects
are rasterized and for each visibility sample ݀݅ݏ and depth
are stored. In the second pass the ݏ݀݅ݏ are sorted in a
compute shader, obtaining an order that maximizes coherent
memory accesses. In the third pass a tiled lighting stage
identical to the one in tiled deferred rendering is executed. In
the fourth and final pass a compute shader loads each tile,
sorts the potentially contributing primitives that had their ids
stored in the ݏ݀݅ݏ and then runs vertex shading, vertex
interpolation and fragment shading functions. The
performance metrics are:

ௗܭ ൌ ሼ ൈ ௗሽଵ ሼݐ ൈ ௗሽଶ݈݁݅ݐ ሼ݈ ൈ ݈ௗሽଷ
ሼݐ ൈ ௗሽସ݈݁݅ݐ
ܭ ൌ ൛ݒ ൈ ൟଵݒ ൛݈݁݅ݐൟଶ ൛݈ݒ ൈ ൟଷݒ݈

		൛ݒ ൈ ݒ ൈ ݁ݏݏ ൈ ൟସݍ݁

ܭ ൌ ݏݒ ൈ ൈ 2 ݏݏ ൈ 	 ൈ 3 ݈݈݉݁݉
ௗܭ ൌ ሼ݈݂ ൈ ሺ݈ ݂ௗ 3ሻ ൈ 3 ൈ ሽସ݁ݏݏ
ሼݒ ൈ ௗݒ ݁ݏݏ ൈ ݂ ൈ 3ሽଵ 	ሼݐ ൈ ௗሽଶ݈݁݅ݐ
 ሼ݈ݒ ൈ ௗݒ݈ ݈݂ሽଷ ሼሺ1 െ ሻ݈݈ݑܿݒ ൈ ݒ ൈ ௗሽସݒ

Besides using decoupled sampling and saving the bandwidth
for multiply referenced shading samples, this algorithm also
saves vertex bandwidth through the sorting and culling of
occluded primitives, at tile level. Therefore the bandwidth for
vertex attributes and for their interpolation is used only when
it will affect shading. Furthermore, this algorithm does not
require a complex cache mechanism.

5. CONCLUSIONS

We have introduced a set of measuring functions with which
deferred rendering algorithms can be analyzed and compared.
The introduced performance metrics have both practical and
academic value since they depict in a clear and comparable
way the strengths and weaknesses of the deferred rendering
algorithms.

Because of the large variety of rendering architectures and
hardware platforms no single algorithm can always represent
the best choice, but with the introduced functions a quick
assessment can easily be obtained. A high level comparison
of the algorithms is given in Appendix A and Appendix B.

For the future we are interested in extending our work to
better measure rendering algorithms that heavily rely on
synchronization functions, such as those used in decoupled
rendering. We are also interested in researching how our
newly introduced measuring functions could be used to swap
deferred algorithms dynamically during rendering.

5. ACKNOWLEDGEMENTS

Part of the research presented in this paper was supported by
the Sectoral Operational Program of Human Resources
Development, 2014-2015, of the Ministry of Labor, Family
and Social Protection through the Financial Agreement
POSDRU/159/1.5/S/134398 between University
POLITEHNICA of Bucharest and AM POS DRU Romania.

REFERENCES

Burns C., Hunt W. (2013), The visibility buffer: a cache
friendly approach to deferred shading, Journal of
Computer Graphics Techniques, vol. 2, no. 2.

Clarberg P., Toth R., Munkberg J. (2013), A sort based
deferred shading architecture for decoupled sampling, in
ACM Transactions of Graphics (Proceedings of
SIGGRAPH 2013), vol 32(4), pp 141:1-141:10, July.

Cook H., Carpenter L., Catmull E. (1988), The Reyes image
rendering architecture, in Tutorial: computer graphics,
image synthesis, pp 28-35.

Crassin C., Neyret F., Sainz M., Green S., Eisemann E.
(2011), in ACM SIGGRAPH 2011 Talks, Article no. 20.

CONTROL ENGINEERING AND APPLIED INFORMATICS 41

Dachsbacher C., Stamminger M. (2005), Reflective Shadow
Maps, in Proceedings of the 2005 Symposium on
Interactive 3D Graphics and Games, pp. 203-231.

Davidovic T., Georgiev I., Slusallek P. (2012), Progressive
Light Cuts for GPU, ACM SIGGRAPH 2012 Talks.

Deering M., Winner S., Schediwy B., Duffy C., Hunt N.
(1988), The triangle processor and normal vector shader:
A VLSI system for high performance graphics , in
Proceedings of the 15th annual conference on computer
graphics and interactive techniques, pp 21-30.

Harada T. (2012), A 2.5D culling for forward+, GDC, 2012
Hoef M. (2013), Hybrid Deferred Rendering. unpublished.
Jimenez J., Gutierrez D., Yang J., Reshetov A., Demoreuille

P., Berghoff T., Perthuis C., Yu H., Mcguire M., Lottes
T., Malan H., Persson E., Andreev D., Sousa T. (2011),
Filtering approaches for real-time anti aliasing, ACM
SIGGRAPH Courses.

Kirscher S., Lawrence A. (2009), Inferred Lighting: fast
dynamic lighting and shadows for opaque and
translucent objects, in Proceedings of the 2009 ACM
SIGGRAPH Symposion of Video Games, pp. 39-45..

Koonce R. (2007), Deferred Shading in Tabula Rasa, GPU
Gems 3, Chapter 19.

Lauritzen A. (2012), Intersecting Lights, in the 39th
International conference and Exhibition on Computer
Graphics and Interactive Techniques, SIGGRAPH.

Lee M. (2009), Pre-Lighting in Resistance 2, GDC.
Liktor G., Dachsbacher C. (2012), Decoupled deferred

shading for hardware rasterization, in Proceedings of the
ACM SIGGRAPH Symposion on Interactive 3D
Graphics and Games, pp. 143-150.

Mara M., Mcguire M., Luebke D. (2013), Lighting Deep G-
Buffers: A single-pass, layered depth images with
minimum separation applied to indirect illumination,
NVIDIA Corporation, December.

Olsson O., Sintorn E., Kämpe V., Billeter M., Assarson U.
(2014), Implementing Efficient Virtual Shadow Maps for
Many Light, in SIGGRAPH '14: ACM SIGGRAPH 2014.

Olsson O., Assarsson U. (2011), Tiled Shading, Journal of
Graphics GPU and Game Tools, vol 15, nr 4, pp 235-
251.

Olsson O., Billeter M., Assarsson U. (2012), Clustered
Deferred and Forward Shading, in Proceedings of the
Conference on High Performance Graphics.

Pangerl D. (2009), Deferred rendering transparency,
ShaderX7

Ragan-Kelley J., Lehtinen J., Chen J., Doggett M., Durand F.
(2011), Decoupled Sampling for Graphics Pipelines,
ACM Transactions of Graphics, Vol. 30, Iss. 3, May.

Reshetov A. (2012), Reducing Aliasing Artifacts Through
Resampling, in High Performance Graphics.

Ritschel T., Grosch T., Kim M., Seidel H., Dachsbacher C.,
Kautz J. (2008), Imperfect Shadow Maps, in ACM
Transaction of Graphics, vol. 27, nr. 5.

Ritschel T., Grosch T., Seidel H. (2009), Approximating
dynamic global illumination in image space, in
Proceedings of the 2009 symposium on the interactive
3D graphics and games, pp 75-82.

Shishkovtsov O. (2005), Deferred Shading in S.T.A.L.K.E.R.,
GPU Gems 2: Programming and Techniques for High

Performance Graphics and General Purpose
Computation, Chapter 9.

Thibieroz N. (2009), Deferred Shading with Multisampling
Anti-Aliasing in DirectX 10, ShaderX 7.

Tokuyoshi Y., Ogaki S. (2012), Real-time bidirection path
tracing via rasterization, in Proceedings of the ACM
Symposium on Interactive 3D Graphics and Games.

Treblico D. (2009), Light Indexed Deferred Rendering,
ShaderX 7.

Appendix A. FIRST APPENDIX

Algorithm

Light-
Object
∩Acc.

Trans-
parency
support

HW
MSAA
support

Light
access
pattern

Material
access
pattern

F imp y y rand rand
DPP imp n y rand rand
D imp n n seq rand
DD imp p n seq rand
LPP imp y y seq rand
DT imp p n seq rand
LiD exp n n rand seq
LiF exp y y rand seq
LLiD exp n n rand seq
LLiF exp y y rand seq
TD exp n n rand seq
TF exp y y rand seq
F+ exp y y rand seq
CD exp n n rand seq
CF exp y y rand seq
D++ dec y y seq seq
DDS dec y n seq seq
SbDDS dec y y seq seq

imp=implicit, exp=explicit, dec=decoupled, rand=random,
seq=sequential, p=partial

Appendix B. SECOND APPENDIX

Algorithm

Decouple
rates

GPU
Cmd cost

Proc
Cost

Alloc
Mem

Band-
width

F n , n ++ +++ --- +++
DPP n , n ++ ++ - -
D n , n -- - ++ ++
DD n , n - + +++ +++
LPP n , n ++ + + +
DT n , n - ++ +++ +++
LiD n , n - - + ++
LiF n , n ++ + + +
LLiD n , n - - + ++
LLiF n , n + + + +
TD n , n - - ++ ++
TF n , n + + + +
F+ n , n + + + +
CD n , n - - ++ ++
CF n , n + + + +
D++ y , n + +++ + -
DDS y , n + +++ ++ --
SbDDS y , y - +++ ++ --

The metrics are given for large numbers of lights and objects.

