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Abstract: The article discusses the question of a combined strategy for control of interaction force 
between a manipulator and a flexible environment, aimed at conducting robotized machining of surfaces 
of disturbed shape, taking into account their flexibility. The control strategy combines, on the basis of 
competitiveness, two elementary control strategies. The first one aims at conducting the desired 
interaction force, whereas the objective of the latter is to model the nominal shape of the processed 
surface. In the event the shape of the real surface differs from the nominal shape, the actions of both 
strategies become competitive. A combination of two strategies which allows selecting a middle solution 
automatically and which allows each strategy to be executed in a „soft” way has been set forth. 
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

1. INTRODUCTION 

Manipulators are becoming more and more frequently 
applied in the broadly defined industry, which requires the 
realization of a desired motion path of the manipulator end-
effector with simultaneous control of the forces of interaction 
with the environment. Currently, attempts are being made to 
provide a precise control of forces in order to ensure proper 
execution of processes such as grinding, chamfering, 
polishing, etc. (Lotz et al.,2014; Tian et al., 2016; Yu et al., 
2011). The problem of contact between the manipulator and 
the environment is associated with partial restrictions of the 
manipulator's motion, i.e. the existence of constraints. 

In the field of robotized machining, the environment with 
which a robot interacts is understood as a surface or an edge 
which is contacted by the robot by means of an end-effector. 
The end-effector is equipped with a tool for a specific task. A 
crucial and still relevant issue connected with robotized 
machining is designing and implementing control strategies 
which ensure appropriate machining quality despite the 
occurrence of non-modeled events, such as significant errors 
in the environment description arising out of the uncertainty 
of its location with regards to the robot or local distortions of 
the environment surface (Fanaei and Farrokhi, 2006; 
Ferguene and Toumi, 2009; Liu et al., 2007; Pliego-Jiménez 
and Arteaga-Pérez, 2015). 

Nowadays, in the field of industrial robotics, two elementary 
strategies of force control prevail (Application manual, 
2011). The first one is based on maintaining a constant 
interaction force together with a constant motion velocity, 
and the trajectory is automatically adjusted to the shape of the 
contact surface (Fig. 1a). Disadvantages of such a solution 
become noticeable in the following case: If the surface is 
processed with the use of a tool of a small contact surface and 
there is e.g. a cavity in the surface, the cavity will be 
deepened with each passage of the tool, which is a result of 

exercising constant clamping force and automatic adjustment 
of the trajectory to the surface profile. Nonetheless, this 
method is very effective in processes such as e.g. polishing, 
when the processed surface is devoid of significant cavities 
and the tool has a large operative surface. The second control 
strategy is based on the motion of the manipulator end-
effector along the desired trajectory, regardless of the shape 
of the processed surface (Fig. 1b). In this case, the variable 
value is motion velocity, which is dependable on motion 
resistance. In case there is some excess material on the 
processed surface, significant motion resistance occurs and 
the motion velocity decreases. In the case of this strategy, 
clamping force is not a controlled value, but is dependent on 
the desired trajectory and the actual shape of the contact 
surface. This strategy is similar to CNC machining methods, 
but the difference is based on the fact that the slide velocity 
depends on tangential forces. The disadvantage of this 
method is a risk of loss of contact between the manipulator 
end-effector and the surface if the desired trajectory 

 

Fig. 1. Main strategies for force control applied in industry. 
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significantly diverges from the actual location of the contact 
surface, or otherwise, it may lead to excessive drilling of the 
manipulator end-effector into the material. The names of the 
aforesaid strategies may differ in commercial applications, 
yet the subject-matter remains the same. Sometimes the basic 
control strategies are modified in order to introduce certain 
adjustability into the way they are executed; nonetheless, they 
are still two separate strategies. 

Successful implementation of the selected control strategies 
is strictly connected with capabilities and methods of 
measurement of interaction forces between the manipulator 
and its environment. In the writings on manipulator force 
control, one can find basically three approaches which are 
used to measure these forces. In one of these approaches, the 
interaction force is defined as a product of the assumed 
stiffness and the deformation of the environment, whereas the 
deformation of the environment is determined by means of 
measurement of the location of the manipulator end-effector 
(Wu and Chen, 2011). Determining deformation requires a 
precise knowledge of the actual environment surface location 
and the knowledge of the current location of the manipulator 
end-effector. The application of such an approach requires 
the calibration of kinematic parameters of the manipulator. 
Otherwise, this method fails to give appropriate results. A 
different approach is the application of a method based on a 
direct measurement of forces by means of a force sensor in 
the manipulator end-effector (Xiao et al., 2000). Such a force 
measurement does not require adopting an environment 
model, which like every model is flawed by errors and 
modeling uncertainty. It does not require assuming the 
stiffness of the environment. During the motion of the 
manipulator with accelerations, a disadvantage of this 
approach is revealed, that is, the measurement of forces is 
distorted by the components of fictitious forces. Nevertheless, 
these distortions are not significant, as the accelerations in the 
tasks in which the interaction between manipulator and its 
environment occurs are low. There is also a middle solution 
based on measurement of forces in the manipulator joints and 
determining forces in its end-effector with the use of 
kinematic Jacobians. This approach requires implementation 
of the kinematic formulas, measurement of the current 
location of the manipulator and calibration of its kinematic 
parameters. It is a very complicated method. Basing on the 
article (Marvel and Falco, 2012) it is claimed that the 
majority of modern manipulators with force control packages 
are based on the measurement of force with the use of force 
sensors in the end-effector, more rarely in the joints. The 
approaches with force control option in which the force 
would be determined by the measurements of the position of 
the end-effector of the manipulator are not present in the 
writings on this subject matter. This confirms in practice the 
replacement of indirect force measurement systems by direct 
force measurement systems. 

The author in his works has hitherto analyzed the issue of 
position/force control of manipulators in interactions with a 
rigid environment (Gierlak, 2012; Gierlak, 2014; Hendzel et 
al., 2014). Moreover, the works analyzed the issue of 
adaptive control of interaction force between the manipulator 
and a flexible environment assuming that the surface rigidity 

parameters remain unknown (Gierlak and Szuster, 2017). All 
those works assumed that the environment surface is 
continuous and the manipulator constantly contacts the 
contact surface. This paper expands the approach to this issue 
when the surface is not continuous and the manipulator 
periodically loses contact with the environment. 

In this paper a combined control strategy which combines 
two elementary strategies (see: Section 2) has been set forth. 
The aim of such an approach is to complement one strategy 
with the second one in situations in which a given elementary 
strategy applied individually results in unfavourable robot 
behavior. This allows making use of the advantages of the 
two elementary strategies and overcoming their 
disadvantages by means of a fluent passage from one strategy 
to the other. In order to ensure a proper execution of a 
strategy, a direct measurement of forces by means of a sensor 
in the manipulator end-effector was used for the purposes of 
this paper. Such an approach ensures appropriate fulfillment 
of the feedback in the force control circuit, even if the surface 
of the environment is not known exactly. At the same time, 
the implementation of the combined control strategy requires 
assuming the nominal geometry of the contact surface 
(determining theoretical constraints) and the knowledge of 
the current location of the manipulator end-effector. 

The objective of designing the control system presented in 
the article is: (i) to provide automatic tuning of the system 
behavior based on the conditions of contact between the 
manipulator and the surface, (ii) to provide smooth 
interaction between the manipulator and the surface, (iii) to 
formulate a control law that is easily interpretable and 
enables simple selection of amplifications. 

The manipulator model is assumed to be a system of rigid 
bodies and the environment model takes into account the 
motion resistance in tangential directions and flexibility in 
normal directions (Section 3). Section 4 discusses the 
position and combined force control task while taking into 
account the manipulator and environment models. Section 5 
is dedicated to the presentation of a numerical example, 
which illustrates the operation of the control system. The 
paper is summarized in Section 6. 

2. COMBINED STRATEGY FOR FORCE CONTROL 

In the following article, a control strategy which may be 
referred to as a combined control strategy, since it combines 
two different control strategies on the basis of 
competitiveness, has been set forth. One of the component 
strategies is based on maintaining the desired interaction 
force together with the desired motion velocity, whereas the 
trajectory is automatically adjusted to the shape of the 
surface. The second component strategy is based on 
executing the desired trajectory regardless of the shape of the 
processed surface. A combination of these strategies on the 
basis of competitiveness introduces to some extent a 
compromise between them, which means that the 
requirements of each strategy are conducted in a „soft” way. 
The proposed method may converge with either of the 
strategies depending on the introduced project coefficient. 
The principles of operation of the component control 
strategies and the result of their competitive combination is 
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presented in Fig. 2. The combined strategy in question is not 
a combination of the two discussed strategies used in 
commercial and industrial applications. The first elementary 
strategy in fact corresponds with the strategy used in 
commercial and industrial applications (Fig. 1a), it also has 
strong theoretical foundations and it is widely discussed in 
the professional literature on this subject-matter; nonetheless, 
the second elementary strategy does not correspond with the 
presented commercial application (Fig. 1b). It derives from 
position control methods and it aims at executing a trajectory 
in order to ensure an appropriate shape of the surface. 

 

Fig. 2. Combined strategy for force control. 

If a theoretical description of the environment and the desired 
trajectory in a normal direction resulting from the said 
description corresponds with the actual environment shape, 
the first elementary strategy is executed. It is an extreme 
example of the system operation and the control is concerned 
only with controlling the clamping force only in the normal 
direction towards the surface. If the shape of the environment 
diverges from theoretical assumptions, the importance of the 
second elementary strategy is consequently stressed, the 
activity of which depends on the difference between the 
desired trajectory and the real trajectory in the normal 
direction. It is worth noticing that in the case the actual 
environment is different from theoretical assumptions, 
competition between the two elementary strategies occurs. 
The control system automatically enforces the balance 
between the strategies and none of them will be fully 
executed. This protects the system from an “extreme” activity 
of each strategy and the disadvantages of the elementary 
strategies do not appear, although they would if they were 
applied individually. 

3. MANIPULATOR AND ENVIRONMENT MODEL 

While implementing the simplest methods of force control 
known from the literature on this subject-matter, which are 
based on assuming infinite stiffness of the environment, very 
important features of mechanical systems, which influence 
both the dynamics of the system and the quality of executing 
the control strategy, are not taken into account. Hence in the 
herein discussed approach to the description of the dynamics 
of the system, the flexibility of the environment, which is a 
significant aspect in the field of robotized machining, has 

been taken into account. This in fact complicates the system 
description, yet it allows real description of this subject-
matter and achieving results which are close to reality. 

Dynamics equation of motion of the manipulator in the joint 
space takes the form (Lewis et al. (1999)) 

ሷݍሻݍሺܯ ൅ ,ݍሺܥ ሶݍ ሻݍሶ ൅ ሶݍሺܨ ሻ ൅ ሻݍሺܩ ൌ ݑ ൅  (1)              ߣሻ்ݍሺܬ

where ݍ ∈ ܴ௡ is the vector of generalized coordinates, 
ሻݍሺܯ ∈ ܴ௡ൈ௡ is the inertia matrix, ܥሺݍ, ሶݍ ሻݍሶ ∈ ܴ௡ is the 
vector of centrifugal and Coriolis forces (moments), ܨሺݍሶ ሻ ∈
ܴ௡ is the viscous friction vector, ܩሺݍሻ ∈ ܴ௡ is the gravity 
vector, ݑ ∈ ܴ௡ is the control input vector, ܬሺݍሻ ∈ ܴ௠ൈ௡ is an 
analytical Jacobian matrix, ߣ ∈ ܴ௠ is an interaction force 
vector expressed in the task space, ݊ is the number of degrees 
of freedom of the manipulator, ݉  is a task space dimension. 

The manipulator’s workspace is associated with the Cartesian 
coordinate system. The kinematics of the manipulator in the 
Cartesian coordinates ܿ is described by the function 

ܿ ൌ ݇ሺݍሻ ∈ ܴ௠.                                                                    (2) 

The relationship between velocity in the Cartesian space and 
in joint space is as follows 

ሶܿ ൌ ሶݍܬ                                                                                    (3) 

where the analytical Jacobian ܬ is 

ܬ	 ൌ ݍ߲/߲ܿ ൌ ߲݇ሺݍሻ/߲(4)                                                     .ݍ 

On the basis of (3) the acceleration takes the form 

ሷܿ ൌ ሶݍሶܬ ൅ ሷݍܬ .                                                                         (5) 

Dependencies (1), (3), (4), and (5) permit to represent the 
dynamics of the manipulator in the Cartesian coordinates ሼܥሽ. 
It will be a convenient form of description of the position-
force control taking into account the characteristics of the 
environment with which the robot interacts. For this purpose 
(1) was premultiplied by ሺ்ܬሻିଵ, in order that the interactive 
force ߣ may be expressed directly in the Cartesian 
coordinates:  

ሷݍሻݍሺܯሾ்ିܬ ൅ ,ݍሺܥ ሶݍ ሻݍሶ ൅ ሶݍሺܨ ሻ ൅ ሻሿݍሺܩ ൌ ݑ்ିܬ ൅  (6)         ߣ

where was taken into account that ሺ்ܬሻିଵ ൌ ሺିܬଵሻ் which 
was written in short form as ்ିܬ. On the basis of (3) and (5) it 
was determined 

ሶݍ ൌ ଵିܬ ሶܿ,                                                                              (7) 
ሷݍ ൌ ଵିܬ ሷܿ െ ଵିܬሶܬଵିܬ ሶܿ,                                                           (8) 

and substituted into (6), which took the form of 

ଵିܬሻݍሺܯ்ିܬ ሷܿ ൅ ሾܥ்ିܬሺݍ, ሶݍ ሻିܬଵ െ ଵሿିܬሶܬଵିܬሻݍሺܯ்ିܬ ሶܿ ൅
ሶݍሺܨሾ்ିܬ ሻ ൅ ሻሿݍሺܩ ൌ ݑ்ିܬ ൅  (9)                                           .ߣ

Assumed designations 

ଵିܬሻݍሺܯ்ିܬ ൌ ሺܯܬሺݍሻିଵ்ܬሻିଵ ൌ ሻݍሺܣ ∈ ܴ௠ൈ௠

,ݍሺܥ்ିܬ ሶݍ ሻିܬଵ െ ଵିܬሶܬଵିܬሻݍሺܯ்ିܬ ൌ
,ݍሺܥ்ିܬ ሶݍ ሻିܬଵ െ ଵିܬሶܬሻݍሺܣ ൌ ,ݍሺܪ ሶݍ ሻ ∈ ܴ௠ൈ௠

ሶݍሺܨሾ்ିܬ ሻ ൅ ሻሿݍሺܩ ൌ ,ݍሺܤ ሶݍ ሻ ∈ ܴ௠

ݑ்ିܬ ൌ ܷ ∈ ܴ௠ ۙ
ۖ
ۘ

ۖ
ۗ

          (10) 
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and the dynamics of the manipulator were expressed in the 
Cartesian space in the form of (Canudas et al., 1996;  Lewis 
et al., 1993)  

ሻݍሺܣ ሷܿ ൅ ,ݍሺܪ ሶݍ ሻ ሶܿ ൅ ,ݍሺܤ ሶݍ ሻ ൌ ܷ ൅  (11)                              .ߣ

Divide the ݉-dimensional space of the Cartesian coordinates 
ሼܥሽ to subspace ሼܶሽ and ሼܰሽ: ሼܥ	ሽ ൌ ሼܶሽ⨁ሼܰሽ (Vukobratovič 
et al., 2002). Subspace ሼܰሽ is an ݎ-dimensional space of 
directions ݊௜ normal to the contact surface of the 
manipulator’s end-effector and the environment, whereas 
subspace {T} is (݉ െ  dimensional space of tangent-(ݎ
directions ߬௜. Therefore the vector ܿ can be written as 

ܿ ൌ ሾܿఛ் ܿ௡்ሿ்                                                                    (12) 

where ܿఛ ∈ ܴ௠ି௥, ܿ௡ ∈ ܴ௥. Assuming that the environment, 
with which the manipulator enters contact (through the end-
effector) is characterized by elasticity, then the said 
environment feature is present in the subspace ሼܰሽ. The 
environment will be described by the equation:  

௘ܿ௡ܭ ൌ  ௘௡                                                                          (13)ܨ

where ܭ௘ ∈ ܴ௥ൈ௥ is a diagonal matrix of stiffness of the 
environment, that meets the dependency ܭ௘ ൌ ௘்ܭ ൐ 0. 

In the tangential direction, the movement of the end-effector 
of manipulator over the contact surface will be accompanied 
by resistance. It is modeled with dry friction. In the case of 
translation in the contact plane the elements of the vector ܨ௘ఛ 
will take the form:  

௘ఛሺ.ሻܨ ൌ  ఛሺ.ሻሻ                                                  (14)ݒሺ݊݃݅ݏ௘௡ሺ.ሻܨߤ

where ܨ௘ఛሺ.ሻ, ܨ௘௡ሺ.ሻ are appropriate components of tangential 
and normal force, ߤ is the coefficient of dry friction, ݒఛሺ.ሻ is 
the velocity of movement along the direction ߬ሺ. ሻ. However, 
in the instance of rotation in the contact plane the elements of 
vector ܨ௘ఛ will take the form: 

௘ఛሺ.ሻܨ ൌ  ሺ߱௡ሺ.ሻሻ                                               (15)݊݃݅ݏ௘௡ሺ.ሻܨ௓ߤ

where: ܨ௘ఛሺ.ሻ, ܨ௘௡ሺ.ሻ are appropriate components of the 
tangential and normal force, in this instance ܨ௘ఛሺ.ሻ will be the 
momentum of resistance forces, ߤ௓ is a substitute coefficient 
of dry friction, ߱௡ሺ.ሻ is an angular velocity of rotation in the 
contact plane, that is the turnover around the axis ݊ሺ. ሻ.  

In relation to the above dissertations, the interaction force 
vector can be written as 

ߣ ൌ ሾെܨ௘ఛ் െܨ௘௡் ሿ்                                                            (16) 

where ܨ௘ఛ ∈ ܴ௠ି௥ is a vector of tangential forces, ܨ௘௡ ∈ ܴ௥ is 
a vector of normal forces. 

On the basis of (13) the formula is receive:  

ܿ௡ ൌ ௘ܲܨ௘௡                                                                          (17) 

where ௘ܲ ൌ ௘ିଵܭ ∈ ܴ௥ൈ௥ is the environmental flexibility 
matrix, which is the diagonal matrix, hence the dependence 
of ௘ܲ ൌ ௘ܲ

் ൐ 0 arises. Taking into account (17) in (12), and 
then in (11), the following equation is obtain 

ሻݍሺܣ ൤
ሷܿఛ

௘ܲܨሷ௘	௡
൨ ൅ ,ݍሺܪ ሶݍ ሻ ൤

ሶܿఛ
௘ܲܨሶ௘	௡

൨ ൅ ,ݍሺܤ ሶݍ ሻ ൌ ܷ ൅  (18)         ߣ

or 

ሷߠܧሻݍሺܣ ൅ ,ݍሺܪ ሶݍ ሻߠܧሶ ൅ ,ݍሺܤ ሶݍ ሻ ൌ ܷ ൅  (19)                         ߣ

where 

ߠ ൌ ቂ
ܿఛ
௡	௘ܨ

ቃ ∈ ܴ௠,                                                                (20) 

ܧ ൌ ൤
ሺ௠ି௥ሻൈሺ௠ି௥ሻܫ 0

0 ௘ܲ
൨ ∈ ܴ௠ൈ௠.                                     (21) 

Equation (19) describes the dynamics of the system in 
Cartesian space as a function of movement parameters in the 
tangent plane and the forces on the normal directions. This 
mathematical model bears the structural qualities of stiff 
manipulator models as set forth by (Canudas et al.,  1996). 

4. THE FUNDAMENTALS OF POSITION-FORCE 
CONTROL WITH THE USE OF COMBINED CONTROL 

OF INTERACTION FORCE 

In terms of the theory of control, the execution of the motion 
of a manipulator during its interaction with the environment 
is understood as control of a system with constraints. These 
constraints result from the shape of the environment surface 
and they are referred to as constraints that limit the 
movement of the system. They generate reactions, that is, 
interaction forces, which may be controlled. This allows 
executing a selected strategy for force control. 

The presented control algorithm is based on assuming the 
knowledge of the environment surface and system dynamics. 
Thus, let the dynamics of the system (19) and: 

- nominal trajectory of the manipulator end-effector in 
normal direction ܿ௡	௡௢௠ሺݐሻ ∈ ܴ௥ and its derivative, that is, 
the motion velocity ሶܿ௡	௡௢௠ሺݐሻ, which result from the assumed 
shape of the environment, 

- motion trajectory of the manipulator end-effector in 
tangential direction ܿఛௗሺݐሻ ∈ ܴ௠ି௥, ሶܿఛௗሺݐሻ, ሷܿఛௗሺݐሻ, 

- desired force in ݊-direction ܨ௘௡ௗሺݐሻ ∈ ܴ
௥, ܨሶ௘௡ௗሺݐሻ, ܨሷ௘௡ௗሺݐሻ. 

A control, that ensures execution the desired motion and 
force trajectories in the form of 

ܷ ൌ ߚሻݍሺܣ ൅ ,ݍሺܪ ሶݍ ሻߠܧሶ ൅ ,ݍሺܤ ሶݍ ሻ ൅  ஼                         (22)ܨ

was taken, in which ܪሺݍ, ሶݍ ሻߠܧሶ ൅ ,ݍሺܤ ሶݍ ሻ is supposed to 
compensate for non-linearity. The unit ߚ ∈ ܴ௠ selected as 

ߚ ൌ ቈ
ሷܿఛௗ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛܭ

ሷ௘௡ܨ௘ିଵܭ
቉                                                  (23) 

is responsible for minimizing the motion error in the 
tangential direction and compensating for the influence of the 
environment in the normal direction. The matrices ܭ௉ ∈
ܴሺ௠ି௥ሻൈሺ௠ି௥ሻ and ܭ௏ ∈ ܴ

ሺ௠ି௥ሻൈሺ௠ି௥ሻ are the matrices of 
direct proportion and differential amplifications in the 
position control circuit. The error of motion in the tangential 
direction is marked as 

ܿ̃ఛ ൌ ܿఛௗ െ ܿఛ,                                                                     (24) 
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whereas ܨ஼ ∈ ܴ௠  is force control selected in the form of 

஼ܨ ൌ ሾܨ௘ఛ் ܷி
்ሿ்.                                                               (25) 

Part of the control ܨ௘ఛ is responsible for compensating for the 
resistance forces in tangential direction, whereas the term 

ܷி ൌ ܷ௡ െ ௩ܷ                                                                     (26) 

aims at executing combined force control. The term 

ܷ௡ ൌ ෨௘௡ܨி௉ܭ ൅ ሶ	෨ܨி௏ܭ ௘௡                                                     (27) 

has been introduced in order to execute the first elementary 
strategy, that is, minimizing the error of interaction force in 
normal direction, in which ܭி௉ ∈ ܴ௥ൈ௥ is a matrix of 
proportional force gain, ܭி௏ ∈ ܴ௥ൈ௥ is a matrix of differential 
force gain, whereas 

෨௘௡ܨ ൌ ௘௡ௗܨ െ  ௘௡                                                                (28)ܨ

is the error of executing force in normal direction. The unit 
௩ܷ creates a situation in which in the case of differences 

between theoretical constraints and real constraints, the 
manipulator end-effector does not diverge from theoretical 
constraints significantly. It is the control which aims at 
executing the desired trajectory in the normal direction, thus 
it executes the second elementary strategy. The unit ௩ܷ may 
be interpreted in terms of mechanical systems in an 
interesting way. It may be understood as a virtual resistance 
force, which substitutes the reaction of real system 
constraints in the case when manipulator loses contact with 
these constraints, e.g. due to surface irregularities. The form 
of this part of control is based on the model of elastic and 
viscous resistances as follows: 

௩ܷ ൌ ߦ௞ܭ ൅  ሶ,                                                                (29)ߦ௖ܭ

in which ܭ௞ ∈ ܴ௥ൈ௥ and ܭ௖ ∈ ܴ௥ൈ௥ are diagonal gain 
matrices, which may be interpreted as coefficients of virtual 
spring and viscous resistances. The value ߦ ∈ ܴ௥ defined as 

ߦ ൌ ܿ௡ െ ଴ߦ െ ܿ௡	௡௢௠                                                         (30) 

is connected with the difference between nominal position of 
the manipulator end-effector ܿ௡	௡௢௠ which results from 
theoretically existing constraints and the real position ܿ௡ in 
the normal direction. In other words ߦ is the measure of the 
displacement of the manipulator end-effector with regard to 
the assumed constraints in a normal direction. To put it in 
detail, it is necessary to add that the formula ߦ଴ ൌ  ௘௡ௗܨ௘ିଵܭ
takes into account the environment deformation resulting 
from the clamping force ܨ௘௡. In the case of high environment 
stiffness, this deformation is not significant, but in the case of 
more susceptible elements, it is necessary to take it into 
account. The discussed issue is presented in Fig. 3. A 
situation in which in a certain area the real constraints 
correspond with the theoretical constraints, an in the other 
area they differ significantly (Fig. 3a). If the real constraints 
correspond with the theoretical constraints, the sum ߦ଴ ൅
ܿ௡	௡௢௠ is equal to ܿ௡ and the control value ௩ܷ ൌ 0 (Fig. 3b). 
Nonetheless, if the real constraints do not correspond with the 
theoretical constraints, the sum ߦ଴ ൅ ܿ௡	௡௢௠ is not equal to ܿ௡ 
and the control ௩ܷ becomes activated (Fig. 3c), which may be 
interpreted as the force of virtual constraints reaction of ܭ௞ 

stiffness and ܭ௖ damping. As shown in Fig. 3c, in the area in 
which there are no natural manipulator constraints, there is no 
constraints reaction as well. An attempt to execute the first 
elementary strategy would result in rapid acceleration of the 
manipulator end-effector until it hits the surface of 
constraints in the fault zone impetuously. Activating the 
second strategy in this area results in generating contrary 
control, which substitutes the activity of the constraints 
reaction force and is referred to as the reaction of virtual 
constraints. This results in the motion of the manipulator end-
effector in the proximity of the theoretical constraints and a 
fluent passage “over the fault zone”. A similar problem of 
modification of the manipulator trajectory in the presence of 
obstacles in the proximity of points of contact with the 
environment, based on the measurement of forces was 
described by (Capisani and Ferrara, 2012).  

 

Fig. 3. Manipulator constraints. 

Taking into account (22)-(30) and (16) in (19), the formula  

ሷߠܧሻ൫ݍሺܣ െ ൯ߚ ൌ ൤
0

ܷ௡ െ ௩ܷ
൨                                              (31) 

was arrived at and then taking into account (20) and (21) and 
by putting it in order, a description of a closed-loop system  

ሻݍሺܣ ቈ
ܿ̃	ሷ ఛ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛܭ
െ ௘ܲܨሷ௘௡ ൅ ሷ௘௡ܨ௘ିଵܭ

቉ ൅ ൤
0

ܷ௡ െ ௩ܷ
൨ ൌ 0                    (32) 

was arrived at. In the case of a precisely known matrix ܭ௘ିଵ 
occurring in the control law, it shall be െ ௘ܲܨሷ௘௡ ൅ ሷ௘௡ܨ௘ିଵܭ ൌ 0 
which eventually results in the following formula 

ሻݍሺܣ ൤ܿ̃	
ሷ ఛ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛܭ

0
൨ ൅ ൤

0
ܷ௡ െ ௩ܷ

൨ ൌ 0.                   (33) 

The equation (33) may be as well put in the following form 
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ቊ
ሷ	ሻ൫ܿ̃ݍଵଵሺܣ ఛ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛ൯ܭ ൌ 0

ሷ	ሻ൫ܿ̃ݍଶଵሺܣ ఛ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛ൯ܭ ൅ ܷ௡ െ ௩ܷ ൌ 0
,                 (34) 

in which 

ሻݍଵଵሺܣ ൌ ଵܧሻݍሺܣଵ்ܧ ∈ ܴ
ሺ௠ି௥ሻൈሺ௠ି௥ሻ,                               (35) 

ሻݍଶଵሺܣ ൌ ଶܧ
ଵܧሻݍሺܣ் ∈ ܴ௥ൈ

ሺ௠ି௥ሻ,                                      (36) 

ଵܧ ൌ ቂܫ௠ି௥
0
ቃ ∈ ܴ௠ൈሺ௠ି௥ሻ,    ܧଶ ൌ ൤

0
௥ܫ
൨ ∈ ܴ௠ൈ௥.                (37) 

The system stability will be demonstrated by means of 
analysis of open solutions of equations of the closed-loop 
system. The analysis of the first equation of (34) aims at 
demonstrating the motion stability in tangential direction, 
whereas the analysis of the second equation of (34) allows 
demonstrating stability of the elementary strategies and the 
combined force control strategy in normal direction. 

Theorem. For limited elements of the ܣଵଵሺݍሻ matrix, the error 
of motion ܿ̃ఛ and their derivatives shall be asymptotically 
convergent to zero, in the case of selection of ܭ௉ and ܭ௏ 
matrices as diagonal matrices, the elements of which in the 
diagonal shall meet the condition 

ሺ݇௏௜/2ሻଶ ൒ ݇௉௜ ൐ 0,					݅ ൌ 1,… ,݉ െ  (38)                            .ݎ

Proof. The first equation of (34) will be fulfilled for limited 
elements of the ܣଵଵሺݍሻ matrix if 

ܿ̃	ሷ ఛ ൅ ሶ	௏ܿ̃ܭ ఛ ൅ ௉ܿ̃ఛܭ ൌ 0.                                                     (39) 

The equation (39) is the system of ሺ݉ െ -ሻ linear secondݎ
order homogeneous differential equations of constant 
coefficients. These coefficients are the proportional gain ݇௉௜ 
and the differential gain ݇௏௜ grouped in the ܭ௉ and ܭ௏ project 
matrices diagonals. The solution of (39) depends on the 
values of these coefficients. The solution will be stable and 
asymptotically divergent to zero for appropriately selected 
matrices ܭ௉ and ܭ௏. It is necessary to analyze the solutions of 
(39) for non-zero initial conditions: 

൜
ܿ̃ఛ௜ሺݐ ൌ 0ሻ ൌ ܿ̃ఛ௜଴
ܿ̃	ሶ ఛ௜ሺݐ ൌ 0ሻ ൌ ܿ̃	ሶ ఛ௜଴

,					݅ ൌ 1,… ,݉ െ  (40)                            .ݎ

The solutions of (39) have the form of 

ܿ̃ఛ௜ ൌ ܴ௜݁ఈ௧.                                                                        (41) 

Upon substituting (41) to (39), the ሺ݉ െ  ሻ of equations inݎ
the following form was obtained:  

ܴ௜݁ఈ௧ሺߙ௜
ଶ ൅ ݇௏௜ߙ௜ ൅ ݇௉௜ሻ ൌ 0,                                           (42) 

in which 

௜ߙ
ଶ ൅ ݇௏௜ߙ௜ ൅ ݇௉௜ ൌ 0                                                         (43) 

is the ݅-th characteristic equation, the solution of which are 
referred to as the characteristic roots. The solution (41) shall 
be of non-oscillational character, if the characteristic roots are 
real, i.e. ሺ݇௏௜/2ሻଶ ൒ ݇௉௜. Then the solution of (40) is 

௜ଵ,௜ଶߙ ൌ െ݇௏௜/2 ∓ ඥሺ݇௏௜/2ሻଶ െ ݇௉௜.                                 (44) 

Both coefficients ߙ௜ଵ and ߙ௜ଶ are negative if ݇௉௜ ൐ 0. Then 
the solution (41) will be asymptotically divergent to zero. 
This implies fulfilling of (39) and the first equation of  (34). 

The analysis of the second equation of (34) is presented 
hereinunder. Taking into account (39), it was put that 

ܷ௡ െ ௩ܷ ൌ 0.                                                                      (45) 

The equation (45) presents the sum of control for the two 
basic control strategies. In order to explain the stability of 
combined control, three cases will be discussed: two extreme 
cases in which basic control strategies are executed 
separately and an intermediate case, in which the strategies 
are executed simultaneously. Such an approach allows deep 
understanding of how the system operates. 

Case 1. If the manipulator maintains contact with the surface 
and conducts the nominal trajectory ܿ௡	௡௢௠ taking into 
account the displacement ߦ଴ ൌ  ௘௡ௗ and the velocityܨ௘ିଵܭ

ሶܿ௡	௡௢௠ taking into account ߦሶ଴ ൌ  ሶ௘௡ௗ in the normalܨ௘ିଵܭ
direction resulting from the shape of the surface, the control 
௩ܷ ൌ 0. Hence the equation (45) that describes the dynamics 

in the normal direction has the form of 

ሶ	෨ܨ ௘௡ ൅ ி௏ܭ
ିଵܭி௉ܨ෨௘௡ ൌ 0.                                                      (46) 

The equation (46) is the system of r linear first-order 
homogeneous differential equations with constant 
coefficients, which can be written as 

ሶ	෨ܨ ௘௡௝ ൅ ݇ி௉௝/݇ி௏௝ܨ෨௘௡௝ ൌ 0,     ݆ ൌ 1,… ,  (47)                       .ݎ

Each of the equations of (47) has one eigenvalue and the 
solution of the equations asymptotically converges with zero 
if the eigenvalue is negative, that is, if ݇ி௉௝/݇ி௏௝ ൐ 0, where 
݇ி௉௝/݇ி௏௝ are the elements in the ܭி௏

ିଵܭி௉ matrix diagonal. 
Solution of (47) has a form  

෨௘௡௝ܨ ൌ  ሻ.                                            (48)ݐሺെ݇ி௉௝/݇ி௏௝	௝expܥ

The initial value of the force error is ܨ෨௘௡௝ሺ0ሻ ൌ ௘௡௝ௗሺ0ሻܨ െ
௘௡௝ሺ0ሻܨ ൌ ௘௡௝ሺ0ሻܨ ௘௡௝ௗሺ0ሻ becauseܨ ൌ 0. By taking into 

account the initial conditions in the equation (48), ܥ௝ ൌ
 ෨௘௡ converges withܨ ௘௡௝ௗሺ0ሻ was arrived at. Since the errorܨ

zero, then ܨ௘௡௝ →  ௘௡௝ௗ according to the equationܨ

௘௡௝ܨ ൌ ௘௡௝ௗܨ െ  ሻ,                   (49)ݐሺെ݇ி௉௝/݇ி௏௝	௘௡௝ௗሺ0ሻexpܨ

whereas, the position of the end-effector determined on the 
basis of (13) is described as 

ܿ௡௝ ൌ 1/݇௘௝ ቂܨ௘௡௝ௗ െ  ሻቃ         (50)ݐሺെ݇ி௉௝/݇ி௏௝	௘௡௝ௗሺ0ሻexpܨ

and ܿ௡௝ → ݐ ௘௡௝ௗ/݇௘௝ forܨ → ∞, i.e. the solution is limited. 

Case 2. If the manipulator does not contact the surface, the 
interaction force is ܨ௘௡ ൌ 0 and a displacement from the 
nominal trajectory in the normal direction occurs. The control 
௩ܷ is activated and the equation describing the balance of 

forces in a normal direction has the form of 

௘௡ௗܨி௉ܭ ൅ ሶ௘௡ௗܨி௏ܭ െ ߦ௞ܭ െ ሶߦ௖ܭ ൌ 0.                              (51) 

The result is that the dynamics of the ߦ error is stimulated 
only by the desired trajectory which is limited, so ߦሶ will be 
limited as well. This is all that could be inferred from the 
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theoretical analysis. Bearing in mind the practical aspects, it 
is necessary to state that in technical applications, both of the 
velocities of changes of forces ܨሶ௘௡ௗ as well as the 
amplifications ܭி௏ are small, thus the significance of the term 
 ሶ௘௡ௗ in (51) is usually minor. This means that the mainܨி௏ܭ
stimulus for the ߦ error is the force ܨ௘௡ௗ, which for slow 
changes is approximately ܨ௘௡ௗ~ܿݐݏ݊݋. Then the system of ݎ 
linear first-order non-homogeneous differential equations of 
constant coefficients may be analyzed 

ሶߦ௖ܭ ൅ ߦ௞ܭ ൌ  ௘௡ௗ.                                                       (52)ܨி௉ܭ

Each of these equations may be put in the form of 

ሶ௝ߦ ൅ ሺ݇௞௝/݇௖௝ሻߦ௝ ൌ ሺ݇ி௉௝/݇௖௝ሻܨ௘௡௝ௗ, ݆ ൌ 1,… ,  (53)           ,ݎ

in which ݇௞௝ and ݇௖௝ are the element of matrices ܭ௞ and ܭ௖. 
For zero initial conditions its solution has the form of 

௝ߦ ൌ ௘௡௝ௗ/݇௞௝ൣ1ܨ െ exp	ሺെ݇௞௝/݇௖௝ݐሻ൧.                             (54) 

If ݐ → ∞ then the deviation in normal direction ߦ௝ →
 ௘௡௝ௗ/݇௞௝, thus the deviation tends asymptotically from zeroܨ

to a constant value. It is noticeable, that the error ߦ௝ → ∞ for 
݇௞௝ ൌ 0, whereas it is reduced in accordance with the 
increase of the coefficient ݇௞௝. The speed of deviation may be 
determined by differentiating the equation (54)  

ሶ௝ߦ ൌ  ሻ                                        (55)ݐሺെ݇௞௝/݇௖௝	௘௡௝ௗ/݇௖௝expܨ

and tends asymptotically from ܨ௘௡௝ௗ/݇௖௝ to zero if ݐ → ∞. 

The maximal speed of deviation value may be reduced by 
increasing the damping factor ݇௖௝. 

Case 3. If two elementary strategies are executed 
simultaneously, thus the combined control is executed, the 
behavior of the system in the normal direction is described by 
(45), which - upon taking into account the controls (27) and 
(29) - has the form of 

෨௘௡ܨி௉ܭ ൅ ሶ	෨ܨி௏ܭ ௘௡ െ ߦ௞ܭ െ ሶߦ௖ܭ ൌ 0.                                (56) 

Such a situation occurs if the manipulator maintains contact 
with the surface of the environment, but the shape of this 
environment fails to correspond with the nominal trajectory 
ܿ௡	௡௢௠. This situation is shown in Fig. 4. In the equation (56), 
two variables, ܨ෨௘௡ and ߦ which are dependent on each other 
are present, thus the force error ܨ෨௘௡ may be expressed in the 
function ߦ. The transformations shall be made in order to 
achieve it. First of all, it is necessary to notice that the value 
of force in the case in question is 

௘௡ܨ ൌ ௘ሺܿ௡ܭ െ ܿ௡	௡௢௠ െ ݄ሻ,                                               (57) 

in which ݄ is the value characterizing the imprecision of the 
actual surface of the constraints assumed as ݄ ൌ   ,.ݐݏ݊݋ܿ
whereas the value of the desired force may be put as ܨ௘௡ௗ ൌ
 ଴. The interaction force error on the basis of (28) has beenߦ௘ܭ
put in the form of 

෨௘௡ܨ ൌ ଴ߦ௘ܭ െ ௘ሺܿ௡ܭ െ ܿ௡	௡௢௠ െ ݄ሻ ൌ ௘ሺ݄ܭ െ  ሻ,            (58)ߦ

in which (30) was used. Substituting the equation (58) to (56) 
results in the equation 

ሺܭி௏ܭ௘ ൅ ሶߦ௖ሻܭ ൅ ሺܭி௉ܭ௘ ൅ ߦ௞ሻܭ ൌ  ௘݄,                  (59)ܭி௉ܭ

which is the system of r linear first-order non-homogeneous 
differential equations of constant coefficients. Each of these 
equations may be put in the form of 

 

Fig. 4. Combined strategy in case of surface inaccuracies. 

ሶ௝ߦ ൅
௞ಷುೕ௞೐ೕା௞ೖೕ
௞ಷೇೕ௞೐ೕା௞೎ೕ

௝ߦ ൌ
௞೐ೕ

௞ಷೇೕ௞೐ೕା௞೎ೕ
௝݄, ݆ ൌ 1,… ,  (60)               .ݎ

The equation (60) was solved analogically to (53), so for zero 
initial conditions ߦ௝ሺ0ሻ ൌ 0, the displacement in the normal 
direction 

௝ߦ ൌ ௝݄
௞೐ೕ

௞ಷುೕ௞೐ೕା௞ೖೕ
൤1 െ ݌ݔ݁ ൬െ

௞ಷುೕ௞೐ೕା௞ೖೕ
௞ಷೇೕ௞೐ೕା௞೎ೕ

 ൰൨                 (61)ݐ

was arrived at. If ݐ → ∞ then ߦ௝ → ௝݄݇௘௝/ሺ݇ி௉௝݇௘௝ ൅ ݇௞௝ሻ, 
thus the deviation tends asymptotically from zero to a 
constant value. It is noticeable that the displacement ߦ௝ ൌ ௝݄ 
for ݇௞௝ ൌ 0, yet it is reduced along with the increase of the 
coefficient ݇௞௝. The dependence of error ߦ௝ on environment 
rigidity and amplification ݇௞௝ in a steady state is presented in 
Fig. 5. The behavior of the system in the coordinates ܿ௡௝ 
which describe the displacement in the normal direction may 
be specified as well. On the basis of (30) it may be put that in 
the state determined for ݐ → ∞ it will be 

ܿ௡௝ ൌ ௝݄݇௘௝ሺ݇ி௉௝݇௘௝ ൅ ݇௞௝ሻ ൅ ଴௝ߦ ൅ ܿ௡௝	௡௢௠,                   (62) 

in which ߦ଴௝ ൌ  ௘௡௝ௗ/݇௘௝. It is also worth to show how inܨ

this situation the interaction force described by means of (57) 
is executed. In the ݆-th direction, this force has the form of 

௘௡௝ܨ ൌ ݇௘௝൫ܿ௡௝ െ ܿ௡௝	௡௢௠ െ ௝݄൯                                         (63) 

and upon taking into account the relation ߦ଴௝ ൌ  ௘௡௝ௗ/݇௘௝ܨ
and (62) the equation 

௘௡௝ܨ ൌ ݇௘௝ ௝݄
ሺଵି௞ಷುೕሻ௞೐ೕି௞ೖೕ
௞ಷುೕ௞೐ೕା௞ೖೕ

൅  ௘௡௝ௗ                                 (64)ܨ

was arrived at. On the basis of (62) and (64) it may be said 
that for ݇௞௝ ൌ 0 and ݇ி௉௝ ൌ 1 the manipulator end-effector 
will move along the surface with additional displacement ߦ଴௝ 
devoid of the nominal trajectory in the normal direction, that 
is, ܿ௡௝ ൌ ௝݄ ൅ ଴௝ߦ ൅ ܿ௡௝	௡௢௠ whereas the interaction force 
will be equal to ܨ௘௡௝ ൌ  ௘௡௝ௗ. On the other hand, forܨ

݇௞௝ → ∞, the manipulator end-effector will move along the 
nominal trajectory with the displacement ߦ଴௝ regardless of the 
environment surface, that is, ܿ௡௝ ൌ ଴௝ߦ ൅ ܿ௡௝	௡௢௠, whereas 
the interaction force will be ܨ௘௡௝ ൌ ௘௡௝ௗܨ െ ݇௘௝ ௝݄. The latter 
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theorem is valid for ܨ௘௡௝ௗ ൒ ݇௘௝ ௝݄, as for significant 

imprecisions of the surface, the value ௝݄ is big enough, so 
that ܨ௘௡௝ௗ ൏ ݇௘௝ ௝݄ and then ܨ௘௡௝ ൌ 0 because there is no 

contact between the manipulator and the environment. Each 
intermediary value ݇௞௝ ∈ ሺ0,∞ሻ introduces a compromise 
between these two extreme solutions. Based on (28) and (64), 
the characteristics of the force error in the function of 
environment rigidity and amplification ݇௞௝ for ݇ி௉௝ ൌ 1 in a 
steady state have been identified (Fig. 6). Obviously, force 
and position errors cannot be simultaneously reduced if a 
surface inaccuracy occurs. The dependence between these 
errors in a steady state is defined as ܨ෨௘௡௝ ൌ ݇௘௝ሺ ௝݄ െ  ௝ሻߦ
based on (58). It is shown in Fig. 7. By selecting 
amplification ݇௞௝, one or the other error is reduced. 

To sum up, it may be concluded that both in the case the real 
constraints correspond with theoretical constraints and in the 
case of significant imprecisions of real constraints, or even in 
the event of the lack of constraints, the solution of the  
closed-loop system equations remain stable. Moreover, for an 
appropriately high amplification ܭ௞ ൌ ݀݅ܽ݃ሼ݇௞௝ሽ, the error ߦ 
may be very little. As shown in the following section, the 
amplification ܭ௞ is the essential parameter having influence 
on the execution of the combined strategy for force control. 

 

Fig. 5. Characteristics of position error ߦ௝. 

 

Fig. 6. Characteristics of force error ܨ෨௘௡௝. 

 

Fig. 7. Dependence of the force error  on the position error. 

The methodology described in this section is based on the 
theory commonly functioning in mechanics. The analysis of 
open forms of solutions of linearized system equations was 
conducted intentionally, taking additionally simplifications. 
This allows understanding the behavior of the system and the 
principles of control system operation.  

5. NUMERICAL EXAMPLE 

As an example, let's consider control of a two-link planar 
manipulator (Fig. 8) whose dynamics in joint coordinates is 
described by (1), in which the matrixes and vectors are as 
follows (Gierlak and Szuster, 2017). 

ሻݍሺܯ ൌ ൤
ܽଵ ܽଶܿݏ݋ሺݍଶ െ ଵሻݍ

ܽଶܿݏ݋ሺݍଶ െ ଵሻݍ ܽଷ
൨,                  (65) 

,ݍሺܥ ሶݍ ሻ ൌ ൤
0 െܽଶ݊݅ݏሺݍଶ െ ሶଶݍଵሻݍ

ܽଶ݊݅ݏሺݍଶ െ ሶଵݍଵሻݍ 0
൨,     (66) 

ሶݍሺܨ ሻ ൌ ሾܽସݍሶଵ ܽହݍሶଶሿ்,                                                     (67) 
ሻݍሺܩ ൌ ሾܽ଺cos	ሺݍଵሻ ܽ଻cos	ሺݍଶሻሿ்,                                 (68) 
ݑ ൌ ሾݑଵ  ଶሿ்,                                                                  (69)ݑ
ݍ ൌ ሾݍଵ  ଶሿ்.                                                                   (70)ݍ

The parameters in matrixes are as follows: 

ቐ
ܽଵ ൌ ݈௖ଵଶ ݉ଵ ൅ ݈ଵଶ݉ଶ ൅ ܽଶ		ଵ;ܫ ൌ ݈ଵ݈௖ଶ݉ଶ;
ܽଷ ൌ ݈௖ଶ

ଶ ݉ଶ ൅ ܽସ		ଶ;ܫ ൌ ܿ௩ଵ;		ܽହ ൌ ܿ௩ଶ;
ܽ଺ ൌ ሺ݈௖ଵ݉ଵ ൅ ݈ଵ݉ଶሻ݃;		ܽ଻ ൌ ݈௖ଶ݉ଶ݃

				                    (71) 

where: ݉௜ is a mass of ݅-th link, ݈௜ is a length of ݅-th link, ݈௖௜ 
is the distance between center of mass of ݅-th link and end of 
(݅ െ 1) link, ܫ௜ is a mass moment of inertia of ݅-th link 
relative to its center of mass, ܿ௩௜ is coefficient of viscous 
friction in ݅-th kinematic pair. The parameter values are 
shown in Table 1. The manipulator end-effector's position in 
Cartesian space is: 

ܿ ൌ ቂ
ܿఛଵ
ܿ௡ଵ

ቃ ൌ ൤
݈ଵܿݏ݋ሺݍଵሻ ൅ ݈ଶܿݏ݋ሺݍଶሻ
݈ଵ݊݅ݏሺݍଵሻ ൅ ݈ଶ݊݅ݏሺݍଶሻ

൨.                              (72) 

The analytical Jacobian (4) for the manipulator is: 

ܬ ൌ ൤
െ݈ଵ݊݅ݏሺݍଵሻ െ݈ଶ݊݅ݏሺݍଶሻ
݈ଵܿݏ݋ሺݍଵሻ ݈ଶܿݏ݋ሺݍଶሻ

൨.                                        (73) 

The equation describing the dynamics of the manipulator in 
Cartesian coordinates is (19), where ܣሺݍሻ, ܪሺݍ, ሶݍ ሻ, ܤሺݍ, ሶݍ ሻ, 
and ܷ are defined by (10) and 
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ߣ ൌ ሾെܨ௘ఛଵ െܨ௘௡ଵሿ் ൌ ሾെܨߤ௘௡ଵ݊݃ݏሺ ሶܿఛଵሻ െܨ௘௡ଵሿ்,    (74) 

ܧ ൌ ൤
1 0
0 ௘ܲଵ

൨,                                                                     (75) 

ߠ ൌ ሾܿఛଵ  ௘௡ଵሿ்.                                                               (76)ܨ

In the analyzed case a geometry of the contact surface which 
corresponds with the tangent axis was assumed, hence 
ܿ௡ଵ	௡௢௠ሺݐሻ ൌ .ݐݏ݊݋ܿ ൌ 0, ሶܿ௡ଵ	௡௢௠ሺݐሻ ൌ 0. A constant down 
force towards the surface was assumed, so the trajectory of 
force in a normal direction is ܨ௘௡ଵௗሺݐሻ ൌ ௠௔௫	௘ଵܨ ൌ  ,.ݐݏ݊݋ܿ
ሻݐሶ௘௡ଵௗሺܨ ൌ ሻݐሷ௘௡ଵௗሺܨ ,0 ൌ 0. Due to flexibility, in the normal 

 

Fig. 8. The scheme of the 2-degrees-of-freedom manipulator 
with environment. 

direction the surface deformation of ߦ଴ଵ ൌ  ௘௡ଵௗ/݇௘ଵ willܨ
occur. The trajectory in the tangent direction was assumed in 
a way which allows limiting displacement, velocity and 
acceleration. The displacement is described by the function 

ܿఛଵௗ ൌ ܿ଴ ൅
௩೘ೌೣ

௪ഓ
൤݈݊

௘௫௣൫௪ഓሺ௧ି௧೎భሻ൯ାଵ

௘௫௣൫௪ഓሺ௧ି௧೎మሻ൯ାଵ
൅ ݈݊

௘௫௣൫௪ഓሺ௧ି௧೎రሻ൯ାଵ

௘௫௣൫௪ഓሺ௧ି௧೎యሻ൯ାଵ
൨ (77) 

where ܿ଴ ൌ ܿఛଵௗሺ0ሻ is the initial position of the end-effector, 
 ఛ is the coefficientݓ ,௠௔௫ is the maximum velocityݒ
corresponding to the velocity increase and decrease rate. In 
Fig. 9 the theoretical constraints, the nominal path and real 
constraints (Fig. 9a) and the desired displacement along the 
tangential direction (Fig. 9b) are shown. In the selection of 
actual constraints, selected guidelines presented in (Bruhm et 
al., 2015) have been applied. Parameters of the desired 
trajectory are shown in Table 1. 

5.1  Analytical solutions – case studies 

In the following subsection the results of research into the 
influence of coefficients in the control system on the behavior 
of the system is presented. The influence of the coefficients 
݇௞ଵ and ݇௖ଵ on the implementation of the combined force 
control strategy was researched in particular. Environment 
parameters and control system parameters for linear system 
used in the simulation study are as follows: ݇௘ଵ ൌ 1000 
(N/m), ݄ଵ ൌ െ0.005 (m), ݇௉ଵ ൌ 50 (s-2), ݇௏ଵ ൌ 1 (s-1), 
݇ி௉ଵ ൌ 1 (-), ݇ி௏ଵ ൌ 0.01 (s). In Fig. 10, the results of 
simulation for the case ݇௖ଵ ൌ 50 and selected values of ݇௞ଵ 
equal to 0 (N/m), 500 (N/m), and 5000 (N/m) respectively is 
shown. One may notice that along the increase of the value 
݇௞ଵ the real trajectory ܿ௡ଵ converges with ܿ௡ଵ	௡௢௠ ൅  ଴ଵ evenߦ
in the case when the real constraints do not correspond with 
the theoretical constraints. At the same time the divergence 
between the desired and the real interaction force increases. It 
is in a way substituted by a virtual reaction force generated 
by the second control strategy. On the other hand, the

increase of the coefficient ݇௖ଵ results in a decrease of velocity 
in transients, when a significant divergence of the real 
constraints from the theoretical constraints occurs. Such a 
conclusion is a result of analysis of Fig. 11. Fig. 12 shows the 
influence of amplification ݇௞ଵ when the surface inaccuracy is 
very significant. For ݇௞ଵ ൌ 0, only the force control strategy 
is applied. 

Table 1.  Desired trajectory parameters. 

Desired trajectory parameters 
param. ݒ௠௔௫ ఛݓ ௘ଵ௠௔௫ܨ ܿఛଵௗሺ0ሻ  ௖ସݐ ௖ଷݐ ௖ଶݐ ௖ଵݐ

unit m/s s-1 N m s s s S 
value 0,03 5 -10 0,22 2 7 8 8 

 

Fig. 9. Desired trajectory of manipulator end-effector: a) 
nominal path and real constraints (surface profile), b) the 
desired displacement along the tangential direction. 

 

Fig. 10. The results of control strategy implementation for 
݇௖ଵ ൌ 50 (kg/s) and for different ݇௞ଵ values: a) normal 
interaction force, b) displacement of manipulator end-effector 
along the normal direction, c) control signal ܷ௡ ൌ
݇ி௉ଵܨ෨௘௡ଵௗ ൅ ݇ி௏ଵܨ෨	ሶ ௘௡ଵ for strategy 1, d) control signal 

௩ܷ ൌ ݇௞ଵߦଵ ൅ ݇௖ଵߦሶଵ for strategy 2. 

In practical applications, it may lead to an impact with a 
constraint surface. For ݇௞ଵ ൐ 0, dislocation on the normal 
direction is limited despite the lack of a constraint surface. It 
may be said that the implementation of strategies and the 
influence of project coefficients in the control system is just 
as it was assumed at the stage of theoretical analysis. 
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Fig. 11. The results of control strategy implementation for 
݇௞ଵ ൌ 500 (N/m) and for different ݇௖ଵ values: a) normal 
interaction force, b) displacement of manipulator end-effector 
along the normal direction, c) control signal ܷ௡ for strategy 1, 
d) control signal ௩ܷ for strategy 2. 

 

Fig. 12. The results of control strategy implementation for 
݄ଵ ൌ 0.05 (m) and for different ݇௞ଵ values: a) normal 

interaction force, b) displacement of manipulator end-effector 
along the normal direction, c) control signal ܷ௡ for strategy 1, 
d) control signal ௩ܷ for strategy 2. 

5.2  Results of numerical simulation 

This subsection contains results of simulations of differential 
equations of motion that take the non-linear dynamics of the 
manipulator into account as per the diagram shown in Fig. 
13. The control object parameters are as follows: ܽଵ ൌ 0.036 
(kgm2), ܽଶ ൌ 6 ∙ 10ିହ (kgm2), ܽଷ ൌ 0.031 (kgm2), ܽସ ൌ
0.54 (Nms) , ܽହ ൌ 0.51 (Nms) , ܽ଺ ൌ 0.05 (Nm) , ܽ଻ ൌ
0.025 (Nm) , ݈ଵ ൌ 0.22 (m) , ݈ଶ ൌ 0.22 (m) , ߤ ൌ 0.04 (-). 
The ݇௞ଵ coefficient value has been selected based on the 
dependence between error ߦଵ and control amplifications 
resulting from the solution (61) for the fixed state. 
Admissible error ߦଵ ൌ 0.0002 (m) has been determined, as 
well as other values of control system. ݇௞ଵ ൌ 24000 has 
been determined. Based on (58), force error will equal 
෨௘௡ܨ ൌ െ4.8 (N). Assuming velocity limit of 0.0033 (m/s), 
amplification ݇௖ଵ ൌ 500 (kg/s) has been determined based on 
the analysis of solution (61) as well. The issue can be 
approached differently, i.e. by assuming the force error and 
determining control amplifications, from which movement 
parameter errors will result. Fig. 14 shows the results of a 
numerical simulation and, additionally, courses of analytical 
solutions of a simplified linear system in order to prove the 
correctness of assumed simplifications. The control signal in 
Cartesian space consists of the control based on the 
mathematical model of the object ݑ௠ ൌ ሾݑ௠ଵ  .௠ଶሿ் (Figݑ
14a) and force control ܨ஼ ൌ ሾܨ஼ଵ  ஼ଶሿ். The control signalܨ
component for the tangential direction ܨ஼ଵ ൌ  ௘ఛ is presentedܨ
in Fig. 14b. The control resulting from the execution of 
strategies 1 and 2 is shown as well (Fig. 14c and Fig. 14d). 

 

 

 

 

 
 Fig. 13. The scheme of the closed-loop system. 
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Fig. 14. The results of control strategy implementation: a)  
control based on the mathematical model of an object 
௠ݑ ൌ ሾݑ௠ଵ ௠ଶሿ்ݑ ൌ ߚሻݍሺܣ ൅ ,ݍሺܪ ሶݍ ሻߠܧሶ ൅ ,ݍሺܤ ሶݍ ሻ, b) 
tangential force control – friction compensation, c) control 
signal ܷ௡ for strategy 1, d) control signal ௩ܷ for strategy 2, e) 
normal interaction force, f) displacement of manipulator end-
effector along the normal direction. 

In the first control phase the strategy 1, responsible for force 
control, generates the signal ܷ௡ approximately at a constant 
level, whereas the strategy connected with maintaining a 
constant nominal trajectory in the normal direction in the first 
stage of motion (until approximately 4 (s), that is, for 
ܿఛଵ ൑ 0.28 (m)) is basically not active – except for the first 
second of motion, when the manipulator end-effector is 
pressed against the surface. The strategy 2 is activated in the 
4 (s) of motion for ܿఛଵ ൐ 0.28 (m), then the real surface 
profile changes in relation to the nominal profile of the value 
݄ଵ ൌ 0.005 (m). The subtraction of controls ܷி ൌ ܷ௡ െ ௩ܷ is 
then stabilized at a certain level, which ensures compromise 
between the objectives of both strategies. As shown, for 
ܿఛ ൐ 0.28 (m), when the manipulator end-effector moves 
along a cavity (Fig. 14f), the generated clamping force ܨ௘௡ଵ is 
of a lower value than the desired ܨ௘௡ଵௗ ൌ 10 (N), which is a 
desirable effect in applications connected with machining of 
such surfaces. It is necessary to notice that all the signals in a 
closed-loop system remain limited and the system is stable. 

6. CONCLUSIONS 

The proposed solution introduces a new approach to the 
implementation of processes in which force control is 
required and at the same time a significant imprecision or 
uncertainty of environment description may occur. This 
method is dedicated for the cases in which the shape of the 
contact surface is known and its location in relation to the 
robot is defined. Thanks to appropriate selection of control 

system parameters, this method ensures insensibility of the 
system to local defects of the surface such as cavities. 

The discussed solution fails to remove all the difficulties 
occurring in other methods. For example, the necessity of 
knowing the model of the environment surface still occurs. 
Additionally, the element ߚ contains the second derivative of 
the interaction force ܨሷ௘௡ that, in real applications, will be 
determined based on the measured force signal that includes 
measurement noise. Such an approach always causes 
inconvenience. In order to acquire a good-quality signal 
where differentiation does not “amplify” its high-frequency 
constituents, filtration methods shall be used, such as those 
described in (Flixeder et al., 2017). 

The scheme of the closed system presented in Fig. 13 
contains elements performing the measurement and control, 
which in real conditions generate delays. However, time 
constants of mechanical systems such as manipulators are so 
large, that delays in the measurement and control systems are 
of no practical significance. At the speed of modern 
microprocessor systems, the control calculated at 1 kHz and 
the measurement performed at 10 kHz are standard solutions. 
Therefore, despite the fact that the measurement and control 
parts in Fig. 13 are of theoretical nature, only insignificant 
differences appear in practical implementation because of 
high mechanical inertia of manipulator. 

Nevertheless, the advantage of this solution is that it 
combines two control strategies in a simple way and they can 
be implemented simultaneously. Moreover, by selecting the 
coefficient of control system, a higher priority may be desired 
to a given strategy. 
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